Detecting the presence of project management anti-patterns (AP) currently requires experts on the matter and is an expensive endeavor. Worse, experts may introduce their individual subjectivity or bias. Using the Fire Drill AP, we first introduce a novel way to translate descriptions into detectable AP that are comprised of arbitrary metrics and events such as logged time or maintenance activities, which are mined from the underlying source code or issue-tracking data, thus making the description objective as it becomes data-based. Secondly, we demonstrate a novel method to quantify and score the deviations of real-world projects to data-based AP descriptions. Using nine real-world projects that exhibit a Fire Drill to some degree, we show how to further enhance the translated AP. The ground truth in these projects was extracted from two individual experts and consensus was found between them. Our evaluation spans three kinds of pattern, where the first is purely derived from description, the second type is enhanced by data, and the third kind is derived from data only. The Fire Drill AP as translated from description only for either, source code- or issue-tracking-based detection, shows weak potential of confidently detecting the presence of the anti-pattern in a project. Enriching the AP with data from real-world projects significantly improves detection. Using patterns derived from data only leads to almost perfect correlations of the scores with the ground truth. Some APs share symptoms with the Fire Drill AP, and we conclude that the presence of similar patterns is most certainly detectable. Furthermore, any pattern that can be characteristically modeled using the proposed approach is potentially well detectable.


翻译:检测项目管理反模式(AP)的存在目前需要这方面的专家,而且是一项昂贵的工作。更糟糕的是,专家们可能会引入他们个人的主观性或偏向性。我们首先采用一种新颖的方法,将描述转化为可探测的AP,由任意的衡量标准和事件组成,如记录的时间或维护活动,这些活动来自原始源代码或问题跟踪数据,从而使得描述目标成为基于数据的数据。第二,我们展示了一种新颖的方法来量化真实世界项目与基于数据的AP描述的偏差并分。使用9个显示某种程度的火焰钻探模式的真实世界项目,我们展示了如何进一步加强翻译的AP。这些项目的地面真相来自两名专家,并且他们之间也取得了共识。我们的评估有三种模式,其中第一种纯粹来自描述,第二种类型由数据增强,而第三种模式仅来自数据。我们从描述、源代码或问题跟踪某些基于数据描述中翻译出来的Fireal Drill 特征。我们从最可靠的测算模型中可以明显地探测到从真实性数据中得出最可靠的结果。

0
下载
关闭预览

相关内容

专知会员服务
115+阅读 · 2021年8月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
7+阅读 · 2020年3月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Arxiv
0+阅读 · 2021年8月25日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
q-Space Novelty Detection with Variational Autoencoders
VIP会员
相关VIP内容
专知会员服务
115+阅读 · 2021年8月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员