Spiking neural networks (SNNs) offer both compelling potential advantages, including energy efficiency and low latencies and challenges including the non-differentiable nature of event spikes. Much of the initial research in this area has converted deep neural networks to equivalent SNNs, but this conversion approach potentially negates some of the advantages of SNN-based approaches developed from scratch. One promising area for high-performance SNNs is template matching and image recognition. This research introduces the first high-performance SNN for the Visual Place Recognition (VPR) task: given a query image, the SNN has to find the closest match out of a list of reference images. At the core of this new system is a novel assignment scheme that implements a form of ambiguity-informed salience, by up-weighting single-place-encoding neurons and down-weighting "ambiguous" neurons that respond to multiple different reference places. In a range of experiments on the challenging Nordland, Oxford RobotCar, SPEDTest, Synthia, and St Lucia datasets, we show that our SNN achieves comparable VPR performance to state-of-the-art and classical techniques, and degrades gracefully in performance with an increasing number of reference places. Our results provide a significant milestone towards SNNs that can provide robust, energy-efficient, and low latency robot localization.
翻译:Spik Spik 神经网络(SNNS) 提供了令人瞩目的潜在优势,包括能源效率和低延迟性以及包括事件激增不可区别性在内的挑战。该领域的最初研究中,大部分已经将深神经网络转化为等效的 SNN,但这种转换方法可能否定了从零开始开发的基于SNN方法的一些优势。高性能 SnNS 的有希望的领域是模板匹配和图像识别。这一研究引入了第一个高性能 SNNN,用于视觉场所识别(VPR)任务:根据一个查询图像,SNNN必须找到最接近的图像列表。在这个新系统的核心,这是一个创新的任务计划,它采用了一种模棱两可且知情的显著特征,通过提升单位编码神经元和降低“坚韧性”神经元对多个不同参考地点作出反应。在挑战性的Nordland、牛津机器人、SPEDTest、Synthia和圣露西亚数据集的一系列实验中,我们SNNNP能够实现可比的VPR低度和低级参考率,在州、高度、高度、高度、高度的SNPNPRO-CED能够提供大量的优级和高度的州级成果。