A simplicial vertex of a graph is a vertex whose neighborhood is a clique. It is known that listing all simplicial vertices can be done in $O(nm)$ time or $O(n^{\omega})$ time, where $O(n^{\omega})$ is the time needed to perform a fast matrix multiplication. The notion of avoidable vertices generalizes the concept of simplicial vertices in the following way: a vertex $u$ is avoidable if every induced path on three vertices with middle vertex $u$ is contained in an induced cycle. We present algorithms for listing all avoidable vertices of a graph through the notion of minimal triangulations and common neighborhood detection. In particular we give algorithms with running times $O(n^{2}m)$ and $O(n^{1+\omega})$, respectively. Additionally, based on a simplified graph traversal we propose a fast algorithm that runs in time $O(n^2 + m^2)$ and matches the corresponding running time of listing all simplicial vertices on sparse graphs with $m=O(n)$. Moreover, we show that our algorithms cannot be improved significantly, as we prove that under plausible complexity assumptions there is no truly subquadratic algorithm for recognizing an avoidable vertex. To complement our results, we consider their natural generalizations of avoidable edges and avoidable paths. We propose an $O(nm)$-time algorithm that recognizes whether a given induced path is avoidable.


翻译:图形的简单顶点是一个顶点, 其周围是一个圆形。 已知, 列出所有简化的顶点都可以在 $( nm) 时间或 $( no ⁇ omega}) 时间上完成, $( n ⁇ omega} ) 是执行快速矩阵乘法所需的时间。 可避免的顶点概念以下列方式概括了简化的顶点概念 : 如果三个带有中间顶点的顶点每一条引出路径都包含在循环中, 以美元( nm) 时间或 $( n ⁇ omega} ) 时间来列出所有简化的顶点头点。 我们通过最小三角定位概念和普通邻居检测来列出所有可避免的顶点。 特别是我们给出运行时间为 $( n ⁇ 2) 和 $( n ⁇ 1 ⁇ omega} 概念。 此外, 我们根据简化的图表, 提出快速算法, 以时间 $( n% 2qual ) 来计算我们无法在正常的平面的平面上显示 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Depth-based clustering analysis of directional data
Arxiv
0+阅读 · 2022年6月21日
Arxiv
0+阅读 · 2022年6月19日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员