Efficient characterization of highly entangled multi-particle systems is an outstanding challenge in quantum science. Recent developments have shown that a modest number of randomized measurements suffices to learn many properties of a quantum many-body system. However, implementing such measurements requires complete control over individual particles, which is unavailable in many experimental platforms. In this work, we present rigorous and efficient algorithms for learning quantum many-body states in systems with any degree of control over individual particles, including when every particle is subject to the same global field and no additional ancilla particles are available. We numerically demonstrate the effectiveness of our algorithms for estimating energy densities in a U(1) lattice gauge theory and classifying topological order using very limited measurement capabilities.
翻译:对高度缠绕的多粒子系统的有效定性是量子科学的一个突出挑战。最近的事态发展表明,少量随机测量足以了解量子多体系统的许多特性。然而,实施这种测量要求对个别粒子进行全面控制,而许多实验平台都不具备这种控制。在这项工作中,我们提出了严格而有效的算法,用于在对个别粒子具有任何程度控制的系统中学习量子多体状态,包括当每个粒子都受同一全球域的制约,而且没有额外的蚂蚁颗粒时。我们用数字来显示我们计算法在U(1)拉特基测量理论中估算能量密度的有效性,并利用非常有限的测量能力对表层顺序进行分类。