As various databases of facial expressions have been made accessible over the last few decades, the Facial Expression Recognition (FER) task has gotten a lot of interest. The multiple sources of the available databases raised several challenges for facial recognition task. These challenges are usually addressed by Convolution Neural Network (CNN) architectures. Different from CNN models, a Transformer model based on attention mechanism has been presented recently to address vision tasks. One of the major issue with Transformers is the need of a large data for training, while most FER databases are limited compared to other vision applications. Therefore, we propose in this paper to learn a vision Transformer jointly with a Squeeze and Excitation (SE) block for FER task. The proposed method is evaluated on different publicly available FER databases including CK+, JAFFE,RAF-DB and SFEW. Experiments demonstrate that our model outperforms state-of-the-art methods on CK+ and SFEW and achieves competitive results on JAFFE and RAF-DB.


翻译:由于过去几十年中各种面部表达式数据库的可访问性已经形成,因此,面部表现识别(FER)任务引起了许多兴趣,现有数据库的多种来源为面部识别任务提出了若干挑战,这些挑战通常由神经网络(CNN)结构处理。与CNN模型不同,最近提出了基于关注机制的变异模型,以完成视觉任务。变异器的主要问题之一是需要大量的培训数据,而大部分FER数据库与其他视觉应用相比是有限的。因此,我们在本文件中提议,与FREF任务的挤压和Excucation(SE)块一起学习一个视觉变异器。拟议方法在各种公开的FER数据库(包括CK+、JAFFE、RAF-DB和SFEW)上进行评估。实验表明,我们的模型在CK+和SFEW方面超越了最新技术方法,在JAFFFFE和RA-DB上取得了竞争性的成果。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
17+阅读 · 2021年3月29日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员