This paper considers Bayesian persuasion for routing games where information about the uncertain state of the network is provided by a traffic information system (TIS) using public signals. In this setup, the TIS commits to a signalling scheme and participants form a posterior belief about the state of the network based on prior beliefs and received signal. They subsequently select routes minimizing their individual expected travel time under their posterior beliefs, giving rise to a Wardrop equilibrium. We investigate how the TIS can infer the prior beliefs held by the participants by designing suitable signalling schemes, and observing the equilibrium flows under different signals. We show that under mild conditions a signalling scheme that allows for exact inference of the prior exists. We then provide an iterative algorithm that finds such a scheme in a finite number of steps. Finally, we show how in the simplified 2-road, 2-state case such a scheme can be constructed without the need for a sequential procedure. Several examples illustrate our results.


翻译:本文考虑了Bayesian在使用公共信号的交通信息系统(TIS)提供网络不确定状态信息的航线游戏的说服权。在这个设置中,TIS承诺采用信号计划,参与者根据先前的信念和收到的信号形成对网络状态的后置信念。他们随后选择了将个人预期旅行时间减少到其后置信念之下、导致战争倾斜平衡的路线。我们调查TIS如何通过设计适当的信号计划并观察不同信号下的平衡流量来推断参与者先前持有的信念。我们表明,在温和条件下,一个信号计划允许准确推断前置存在的情况。我们随后提供了一种迭代算法,在有限的步骤中发现这样一个计划。最后,我们展示了在简化的2条道路上如何在不需要连续程序的情况下构建这种计划。我们举了几个例子来说明我们的结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员