Understanding complex social interactions among agents is a key challenge for trajectory prediction. Most existing methods consider the interactions between pairwise traffic agents or in a local area, while the nature of interactions is unlimited, involving an uncertain number of agents and non-local areas simultaneously. Besides, they treat heterogeneous traffic agents the same, namely those among agents of different categories, while neglecting people's diverse reaction patterns toward traffic agents in ifferent categories. To address these problems, we propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN), which predicts trajectories of heterogeneous agents in multiple categories. Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously, which is adaptive to any number of agents and any range of interaction area. Meanwhile, a hierarchical graph attention module is proposed to obtain category-to-category interaction and agent-to-agent interaction. Finally, parameters of a Gaussian Mixture Model are estimated for generating the future trajectories. Extensive experimental results on benchmark datasets demonstrate a significant performance improvement of our method over the state-of-the-art methods.


翻译:了解代理人之间复杂的社会互动是轨迹预测的一个关键挑战。 多数现有方法都考虑到双向交通代理人之间或当地地区之间的互动,而互动的性质是无限的,同时涉及数量不确定的代理人和非当地地区。 此外,它们对待不同的交通代理人相同,即不同类别的代理人之间相同,同时忽视人们对经发人类别中的交通代理人的不同反应模式。为了解决这些问题,我们建议建立一个简单而有效的无限制邻里互动网络(UNIN),它预测多种类别不同代理人的轨迹。具体地说,拟议的无限制邻里互动模块同时产生所有参与互动的代理人的引信特性,这种特性适用于任何数目的代理人和任何范围的互动领域。同时,还提议了一个分级图表关注模块,以获得类别之间的相互作用和代理人与代理人之间的互动。最后,我们估算了高斯米克斯图模型的参数,以产生未来的轨迹。关于基准数据集的广泛实验结果显示,我们的方法在州一级方法上取得了显著的改进。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
39+阅读 · 2020年9月6日
Link prediction | 三篇SEAL相关工作小结
AINLP
47+阅读 · 2020年11月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Discriminative Model Prediction for Tracking
Arxiv
6+阅读 · 2018年6月21日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
Link prediction | 三篇SEAL相关工作小结
AINLP
47+阅读 · 2020年11月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员