Type 2 Diabetes is one of the most major and fatal diseases known to human beings, where thousands of people are subjected to the onset of Type 2 Diabetes every year. However, the diagnosis and prevention of Type 2 Diabetes are relatively costly in today's scenario; hence, the use of machine learning and deep learning techniques is gaining momentum for predicting the onset of Type 2 Diabetes. This research aims to increase the accuracy and Area Under the Curve (AUC) metric while improving the processing time for predicting the onset of Type 2 Diabetes. The proposed system consists of a deep learning technique that uses the Support Vector Machine (SVM) algorithm along with the Radial Base Function (RBF) along with the Long Short-term Memory Layer (LSTM) for prediction of onset of Type 2 Diabetes. The proposed solution provides an average accuracy of 86.31 % and an average AUC value of 0.8270 or 82.70 %, with an improvement of 3.8 milliseconds in the processing. Radial Base Function (RBF) kernel and the LSTM layer enhance the prediction accuracy and AUC metric from the current industry standard, making it more feasible for practical use without compromising the processing time.


翻译:2型糖尿病是人类已知的最主要和最致命的疾病之一,每年有数千人受到2型糖尿病的感染,然而,在今天的情景下,2型糖尿病的诊断和预防费用相对较高;因此,机器学习和深层学习技术的使用正在形成势头,以预测2型糖尿病的发病情况;这项研究的目的是提高曲线(AUC)指标下的准确度和面积,同时改进预测2型糖尿病发病的处理时间;提议的系统包括一种深层次的学习技术,利用辅助病媒机算法和Radial Base函数(RBF)以及长期短期内存层(LSTM)来预测2型糖尿病的发病情况;提议的解决方案提供了86.31%的平均准确度和平均ACUC值0.8270或82.70%的平均值,同时改进了处理过程的3.8毫秒。Radial Basy(RBF)内核和LSTM层提高了目前工业标准的预测准确度和AUC指标,使其在不损害处理时间的情况下更容易实际使用。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2019年9月11日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员