Type 2 Diabetes is one of the most major and fatal diseases known to human beings, where thousands of people are subjected to the onset of Type 2 Diabetes every year. However, the diagnosis and prevention of Type 2 Diabetes are relatively costly in today's scenario; hence, the use of machine learning and deep learning techniques is gaining momentum for predicting the onset of Type 2 Diabetes. This research aims to increase the accuracy and Area Under the Curve (AUC) metric while improving the processing time for predicting the onset of Type 2 Diabetes. The proposed system consists of a deep learning technique that uses the Support Vector Machine (SVM) algorithm along with the Radial Base Function (RBF) along with the Long Short-term Memory Layer (LSTM) for prediction of onset of Type 2 Diabetes. The proposed solution provides an average accuracy of 86.31 % and an average AUC value of 0.8270 or 82.70 %, with an improvement of 3.8 milliseconds in the processing. Radial Base Function (RBF) kernel and the LSTM layer enhance the prediction accuracy and AUC metric from the current industry standard, making it more feasible for practical use without compromising the processing time.
翻译:2型糖尿病是人类已知的最主要和最致命的疾病之一,每年有数千人受到2型糖尿病的感染,然而,在今天的情景下,2型糖尿病的诊断和预防费用相对较高;因此,机器学习和深层学习技术的使用正在形成势头,以预测2型糖尿病的发病情况;这项研究的目的是提高曲线(AUC)指标下的准确度和面积,同时改进预测2型糖尿病发病的处理时间;提议的系统包括一种深层次的学习技术,利用辅助病媒机算法和Radial Base函数(RBF)以及长期短期内存层(LSTM)来预测2型糖尿病的发病情况;提议的解决方案提供了86.31%的平均准确度和平均ACUC值0.8270或82.70%的平均值,同时改进了处理过程的3.8毫秒。Radial Basy(RBF)内核和LSTM层提高了目前工业标准的预测准确度和AUC指标,使其在不损害处理时间的情况下更容易实际使用。