We have used Bayesian Optimisation (BO) to find hyper-parameters in an existing biologically plausible population neural network. The 8-dimensional optimal hyper-parameter combination should be such that the network dynamics simulate the resting state alpha rhythm (8 - 13 Hz rhythms in brain signals). Each combination of these eight hyper-parameters constitutes a 'datapoint' in the parameter space. The best combination of these parameters leads to the neural network's output power spectral peak being constraint within the alpha band. Further, constraints were introduced to the BO algorithm based on qualitative observation of the network output time series, so that high amplitude pseudo-periodic oscillations are removed. Upon successful implementation for alpha band, we further optimised the network to oscillate within the theta (4 - 8 Hz) and beta (13 - 30 Hz) bands. The changing rhythms in the model can now be studied using the identified optimal hyper-parameters for the respective frequency bands. We have previously tuned parameters in the existing neural network by the trial-and-error approach; however, due to time and computational constraints, we could not vary more than three parameters at once. The approach detailed here, allows an automatic hyper-parameter search, producing reliable parameter sets for the network.
翻译:我们利用贝叶西亚最佳优化(BO)在现有的生物上可信的人口神经网络中找到超参数。8维最佳超参数组合应该使网络动态模拟休息状态阿尔法节律(大脑信号中8-13赫兹节律)。这8个超参数的每一个组合都是参数空间中的“数据点 ” 。这些参数的最佳组合导致神经网络输出光谱峰在阿尔法波段内受到限制。此外,根据对网络输出时间序列的质量观测,对BO的算法实行了限制,因此,高振幅伪周期振荡应该被消除。在成功实施阿尔法波段时,我们进一步优化网络以在(4-8赫兹)和贝塔(13-30赫兹)波段内进行潜移动。模型中变化的节奏现在可以用已确定的最佳超光谱波段来研究。我们以前通过试验和传感器方法对现有神经网络中的参数进行了调整,因此,高振动伪周期振荡的参数应该被删除。但是,由于在试验和感应进行详细的搜索,因此可以进行更精确的计算。