We have used Bayesian Optimisation (BO) to find hyper-parameters in an existing biologically plausible population neural network. The 8-dimensional optimal hyper-parameter combination should be such that the network dynamics simulate the resting state alpha rhythm (8 - 13 Hz rhythms in brain signals). Each combination of these eight hyper-parameters constitutes a 'datapoint' in the parameter space. The best combination of these parameters leads to the neural network's output power spectral peak being constraint within the alpha band. Further, constraints were introduced to the BO algorithm based on qualitative observation of the network output time series, so that high amplitude pseudo-periodic oscillations are removed. Upon successful implementation for alpha band, we further optimised the network to oscillate within the theta (4 - 8 Hz) and beta (13 - 30 Hz) bands. The changing rhythms in the model can now be studied using the identified optimal hyper-parameters for the respective frequency bands. We have previously tuned parameters in the existing neural network by the trial-and-error approach; however, due to time and computational constraints, we could not vary more than three parameters at once. The approach detailed here, allows an automatic hyper-parameter search, producing reliable parameter sets for the network.


翻译:我们利用贝叶西亚最佳优化(BO)在现有的生物上可信的人口神经网络中找到超参数。8维最佳超参数组合应该使网络动态模拟休息状态阿尔法节律(大脑信号中8-13赫兹节律)。这8个超参数的每一个组合都是参数空间中的“数据点 ” 。这些参数的最佳组合导致神经网络输出光谱峰在阿尔法波段内受到限制。此外,根据对网络输出时间序列的质量观测,对BO的算法实行了限制,因此,高振幅伪周期振荡应该被消除。在成功实施阿尔法波段时,我们进一步优化网络以在(4-8赫兹)和贝塔(13-30赫兹)波段内进行潜移动。模型中变化的节奏现在可以用已确定的最佳超光谱波段来研究。我们以前通过试验和传感器方法对现有神经网络中的参数进行了调整,因此,高振动伪周期振荡的参数应该被删除。但是,由于在试验和感应进行详细的搜索,因此可以进行更精确的计算。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
20+阅读 · 2020年12月9日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
33+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关资讯
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员