项目名称: 结构化判别字典学习方法及其应用研究

项目编号: No.61272331

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 向世明

作者单位: 中国科学院自动化研究所

项目金额: 82万元

中文摘要: 判别字典学习是机器学习和模式识别中的一个前沿性课题。现有算法在分类性能、模型训练等方面还不能满足现实的应用需求。本项目拟研究结构化判别字典学习建模方法和算法理论,形成包含结构化稀疏判别字典学习、自导判别字典学习和多视角判别字典学习等在内的字典学习算法。在学习模型构建中,基于监督信息和聚类信息,项目将引入结构化约束来提高字典学习模型的分类判别能力;同时,研究形式紧凑的最大间隔多类分类判别回归模型的构建方法,并将其作为分类器嵌入到判别字典学习模型之中,保证分类性能的同时降低模型复杂度。此外,项目还将构建能够统一多种范数的函数表示模型,以此为基础实现判别字典学习模型的高效求解。   另外,对本项目提出的算法,拟应用于基于样例的图像感兴趣目标分割和图像超像素分割。为此,项目拟开发一个图像分割实验平台,在此平台上验证和分析项目提出的学习算法,提高图像分割的精度和速度,进而促进学习算法的应用研究。

中文关键词: 判别最小二乘回归;稀疏学习;字典学习;深度学习;图像分割

英文摘要: Discriminative Dictionary Learning (DDL) is one of the frontier topics in the fields of machine learning and pattern recognition. Up to now, researcheres have developed a few DDL approaches under the sparse representation framework. However, most of them fail to generate high accurate classification in many realworld situations. Meanwhile, training their learning models may cost a large amount of computation time. To address these issues, this project targets at developing a new class of DDL models in a distinguishing way of structural modeling. In this process, theoretical analyses behind the modeling will be conducted to construct and optimize the DDL models. Specifically, the research work will mainly focus on developing the following learning models, inclduing structured sparse DDL model, self-taught DDL model, and multi-view DDL model. Studying with these models, a new class of DDL algorithms will be finally proposed. To this end, we will study how to derive and formulate structured constraints from supervised information and clusters, so as to improve the discriminative ability of the DDL models. In addition, to embed an effective and efficient classifier into the DDL models to be constructed, we will study how to develop a discriminative regression model with compact form under the large margin framework

英文关键词: Discriminative least squares regression;Sparse learning;Dictionary learning;Deep learning;Image segmentation

成为VIP会员查看完整内容
0

相关内容

专知会员服务
46+阅读 · 2021年8月28日
专知会员服务
39+阅读 · 2021年7月10日
专知会员服务
32+阅读 · 2021年6月18日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
122+阅读 · 2021年4月29日
专知会员服务
69+阅读 · 2021年3月29日
专知会员服务
34+阅读 · 2020年11月26日
深度学习目标检测方法综述
专知会员服务
274+阅读 · 2020年8月1日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
一文归纳AI数据增强之法
极市平台
2+阅读 · 2022年1月11日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
一文读懂图像压缩算法
七月在线实验室
16+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
41+阅读 · 2018年4月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
SkiQL: A Unified Schema Query Language
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Automated Data Augmentations for Graph Classification
Arxiv
0+阅读 · 2022年4月16日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
11+阅读 · 2018年4月8日
小贴士
相关VIP内容
专知会员服务
46+阅读 · 2021年8月28日
专知会员服务
39+阅读 · 2021年7月10日
专知会员服务
32+阅读 · 2021年6月18日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
122+阅读 · 2021年4月29日
专知会员服务
69+阅读 · 2021年3月29日
专知会员服务
34+阅读 · 2020年11月26日
深度学习目标检测方法综述
专知会员服务
274+阅读 · 2020年8月1日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
相关资讯
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
一文归纳AI数据增强之法
极市平台
2+阅读 · 2022年1月11日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
一文读懂图像压缩算法
七月在线实验室
16+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
41+阅读 · 2018年4月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
相关论文
SkiQL: A Unified Schema Query Language
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Automated Data Augmentations for Graph Classification
Arxiv
0+阅读 · 2022年4月16日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
11+阅读 · 2018年4月8日
微信扫码咨询专知VIP会员