项目名称: 纳米金属-绝缘层核壳结构以及纳米金属-上转换材料复合结构在染料敏化太阳能电池上的应用研究

项目编号: No.11304217

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 邓楷模

作者单位: 苏州大学

项目金额: 30万元

中文摘要: 染料敏化太阳能电池作为新型的光电转换器件以其成本低、制作简单等优点受到了广泛的关注。如何进一步提高其光电转换效率是亟待解决的问题。金属表面等离激元效应能够显著改变金属周围电场强度分布,这一特殊的现象可以调控发光材料的光吸收和光发射性质。利用纳米金属复合结构提高染料分子光吸收,并使用纳米金属结合上转换发光材料以扩展光吸收范围,是提高染料敏化太阳能电池光电转换效率非常有潜力的解决方案。本项目将以纳米金属-绝缘层核壳结构以及纳米金属-上转换材料复合结构为研究对象,研究金属表面等离激元效应对染料分子光吸收以及对稀土上转换发光性能的影响,并探索优化的复合结构设计。利用光谱学测量、结构性能表征和光电测试系统,深入研究金属纳米结构的可控制备和上转换发光增强的条件和机理,以期开发出能应用于染料敏化太阳能电池的纳米金属复合结构。

中文关键词: 染料敏化太阳能电池;等离激元;稀土上转换;;

英文摘要: Dye-sensitized solar cells have attracted extensive attention as a new generation of optoelectronic devices due to the novel properties such as low cost and easy fabrication. How to further improve the energy conversion efficiency is a great challenge in urgent need. Surface plasmon effect can dramatically change the electric field distribution around the metal surface, which can be used to tune the absorption and emission properties of luminescent materials. On the one hand, nanostructured metal composite can enhance the absorption cross section of the dye molecules. On the other hand, nanostructured metal-upconversion materials can expand the light absorption band. Both of the above mentioned aspects serve as potential solutions for improving the energy conversion efficiency of dye sensitized solar cells. In this project, we will investigate the nanostructured metal-insulator core-shell strucuture and nanostructured metal-upconversion composite as well as optimal design, and study their surface plasmon effect on dye absorption and upconversion luminescence. By employing spectroscopy, structural measurement and optoelectronic detection system, we will also study the controlled synthesis of nanostructured metal and mechanism of enhanced upconversion luminescence, in order to develop nanostructured metal based ma

英文关键词: dye-sensitized solar cells;aurface plasmon effect;rare earth upconversion;;

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员