项目名称: 核/双壳型埃洛石/Ni/Fe3O4一维催化剂光协同中温催化分解磷化氢机理研究

项目编号: No.51308306

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 建筑科学

项目作者: 唐雪娇

作者单位: 南开大学

项目金额: 25万元

中文摘要: 磷化氢(PH3)是一种会间接导致温室效应的强还原性高毒气体。PH3主要来源于黄磷等工业生产,副产量大,因此在工业排放源头做好PH3的污染防治及资源化利用意义重大。将PH3催化分解为氢气和黄磷正是一项十分符合我国国情且具有显著环境效益和经济价值的资源化技术。本项目拟采用纳米化学镀技术结合浸渍与H2还原法,将具有催化活性的单质Ni与Fe3O4负载于埃洛石纳米管(HNTs)上,制备核/双壳型HNTs/Ni/Fe3O4一维纳米材料,并测试其催化分解PH3的活性,利用先进的材料表征手段,研究HNTs/Ni/Fe3O4物化结构与催化活性的关系;创新性地引入紫外光诱导,开发一种低成本、高效率、中温(280~300℃)催化分解PH3的技术;采用先进的原位分析技术表征PH3催化分解反应的中间产物,提出紫外光协同催化分解PH3的机理。本项目的成果将为高效低耗的分解PH3技术的工业推广提供理论基础和科学依据。

中文关键词: 磷化氢分解;光催化;协同;化学镀;一维纳米材料

英文摘要: Phosphine (PH3) is high-toxic gas with strong reductive ability and can cause greenhouse effect indirect. A quantity of PH3 is produced as byproduct in the industrial production of yellow phosphorus, so it is significant meaningful to carry out the pollution control and resources utilization of PH3 at industrial emission sources. Decomposing PH3 into hydrogen and yellow phosphorus is a PH3 resource utilization technology with significant environment benefit and economic value, and it is suitable to China situation. In the project, the catalytic and active Ni and Fe3O4 sites are loaded on the halloysite nanotubes (HNTs) by introducing electroless nano-plating technology and impregnation as well as H2 reduction. And the core/shell/shell and one-dimensional structural HNTs/Ni/Fe3O4 nanomaterials are formed. The relationships of the physic-chemical properties and the catalytic activities of HNTs/Ni/Fe3O4 are investigated by testing its activities in PH3 catalytic decomposition and characterizing the catalysts by advanced instrumental analysis. The ultraviolet (UV) light irradiation is innovatively introduced to develop a low cost and effective technique to perform catalytic decomposition of PH3 at moderate temperature (280~300℃). The intermediate products in the catalytic decomposition of PH3 are identified by the a

英文关键词: phosphine decomposition;light catalysis;synergism;electroless plating;One dimensional nano materials

成为VIP会员查看完整内容
0

相关内容

工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
2021工业区块链案例集,68页pdf
专知会员服务
86+阅读 · 2021年12月1日
专知会员服务
53+阅读 · 2021年9月11日
专知会员服务
38+阅读 · 2021年8月20日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
NLP类别不均衡问题之loss大集合
PaperWeekly
0+阅读 · 2022年3月22日
零碳智慧园区白皮书(2022),66页pdf
专知
9+阅读 · 2022年2月17日
【ICML2021】低秩Sinkhorn 分解
专知
9+阅读 · 2021年8月20日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关VIP内容
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
2021工业区块链案例集,68页pdf
专知会员服务
86+阅读 · 2021年12月1日
专知会员服务
53+阅读 · 2021年9月11日
专知会员服务
38+阅读 · 2021年8月20日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员