项目名称: 生物材料表面拓扑对于蛋白质特异性吸附作用的研究

项目编号: No.11202049

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 谷俊峰

作者单位: 大连理工大学

项目金额: 26万元

中文摘要: 设计开发具有特异诱导性的生物材料,使其能够针对性的激发人体相应组织和器官的再生修复功能,是现代生物材料学的重要发展方向。生物材料表面拓扑结构在很大程度上决定了材料的表面性质,并影响其与人体内蛋白质的相互作用,以至决定了后续的细胞响应以及组织生长,但目前对材料表面拓扑与蛋白质之间的作用机理还缺乏深入的了解,阻碍了现代生物材料研究的发展。本项目拟基于生物材料的表面拓扑设计来进行具有特异诱导性功能生物材料的研究。针对研究中的关键问题,我们拟首先开发一个针对生物界面模拟的软件平台以及粗粒度力场,以在分子水平上深入考察生物材料表面拓扑与蛋白质之间的作用机理;然后根据上一步的研究成果来建立生物材料表面拓扑结构优化的合理模型,并针对选定的生物材料进行优化求解,使其对目标蛋白具有特异性吸附功能,以最终能够指导现代生物材料的开发设计。

中文关键词: 生物材料;蛋白;吸附;粗粒度;结合自由能

英文摘要: Design and development of biomaterial with specific inducibility which will stimulate the regeneration of the correspondence human tissues is an important development direction of modern biomaterials. The surface topology of biomaterial determines its surface properties to a great extent, and influences the interactions with proteins in human, and eventually determines the following cell response and tissue growth. However, we still do not have a deep understanding of the mechanism between surface topology of biomaterial and protein until now, and therefore hinders the development of modern biomaterials. In this project, biomaterial with specific inducibility will be studied based on the design of its surface topology. Aiming at the key problems in this research, we will first develop a software platform and a coarse-grained force field for the biointerface simulation, so the acting mechanism between biomaterial and protein can be revealed at the molecular level. Then, a rational optimization model of surface topology of biomaterial will be determined based on the previous research results, and the optimization problem will be solved according to a chose biomaterial, so that the biomaterial can have a specified adsorption function to the target protein, and the design and development of modern biomaterial can be

英文关键词: Biomaterial;Protein;Adorsoption;Coarse grain;Binding free energy

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
95+阅读 · 2021年5月25日
专知会员服务
31+阅读 · 2021年5月7日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
深度学习预测蛋白质-蛋白质相互作用
机器之心
5+阅读 · 2022年1月15日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
12+阅读 · 2020年12月10日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关主题
相关VIP内容
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
95+阅读 · 2021年5月25日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
相关论文
Arxiv
46+阅读 · 2021年10月4日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
12+阅读 · 2020年12月10日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年2月17日
微信扫码咨询专知VIP会员