项目名称: 磁性纳米微粒调控的细胞声孔效应机制研究

项目编号: No.11274216

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 莫润阳

作者单位: 陕西师范大学

项目金额: 84万元

中文摘要: 将氧化铁纳米磁性微粒装载进入细胞使其成为磁性细胞,为细胞操作打开了一个新的可能性,但细胞膜选择透过性使自然状态下的磁性微粒难以进入细胞内。微泡增强的声孔效应在药物输送、靶向治疗等方面有巨大的应用潜力,但因超声和细胞作用机制不清楚而使应用受阻。本项目利用纳米微粒吸附微泡,通过控制微粒尺寸、浓度等条件,控制微泡数量并用复频聚焦超声启动和调控混悬液空化程度;以小鼠离体H-22细胞磁标记实验为例证,研究微粒增强空化的规律;基于流体动力学和微泡动力学理论,对空化场中微粒运动规律、微泡在近壁附近溃灭产生的微射流、剪应力等进行数值模拟,结合实验过程中细胞电生理评价、显微观察和测试结果,建立超声-微粒-细胞间相互作用模型,揭示超声提高纳米微粒转运效率的机制,为实现活体细胞快速磁性标记应用奠定基础。

中文关键词: 超声;气泡动力学;泡群;纳米磁性微粒;磁流体动力学

英文摘要: Magnetic cells opened a new possibility for cell operation,but the nature state magnetic particles hard to upload by cells for cell membrane permselectivity. Microbubbles enhanced sonoporation has the potential to be a non-viral transfection tool to deliver drug and targeted therapy. But the possible mechanisms of the sonoporation has not been understood by now.This item cavitation activity in water-particle suspensions was controlled by the number of microparticls and inertial cavitation was promoted by a multifrequency focused ultrasound beam. Sonoporation uses ultrasound to generate transient nonselective pores on the cell membrane and has been exploited as a nonviral intracellular drug delivery strategy.As a sample,we have uploaded magnetic nanoparticles into hepatoma cells by ultrsound,if the membrane potential,the number of pores and the size distribution of pores have to be known, the effects of microbubble on permeability of membrane and the way of endocytosis and the physical mechanisms of sonoporation will be obtained. This work lays a foundation for cell labeling in vivo.

英文关键词: ultrasound;dynamic of microbubble;bubble cluster;magnetic nanoparticle;magnetohydrodynamics

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
中国信通院《5G应用创新发展白皮书》
专知会员服务
32+阅读 · 2022年3月9日
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
153+阅读 · 2021年6月10日
专知会员服务
31+阅读 · 2021年5月7日
【ICMR2020】持续健康状态接口事件检索
专知会员服务
17+阅读 · 2020年4月18日
是什么原因让你不想换手机?
ZEALER订阅号
0+阅读 · 2022年2月12日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
中国信通院《5G应用创新发展白皮书》
专知会员服务
32+阅读 · 2022年3月9日
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
153+阅读 · 2021年6月10日
专知会员服务
31+阅读 · 2021年5月7日
【ICMR2020】持续健康状态接口事件检索
专知会员服务
17+阅读 · 2020年4月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员