项目名称: 空变运动模糊图像的盲复原变分模型及其快速算法

项目编号: No.61305045

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 王国栋

作者单位: 青岛大学

项目金额: 23万元

中文摘要: 本课题研究利用单幅空变运动模糊退化图像恢复清晰场景的算法与理论。空变运动模糊图像盲复原算法的通用性、计算效率问题是制约其应用的主要瓶颈。针对造成图像空变运动模糊的特点,建立基于空间仿射变换的盲复原变分能量模型。设计空变运动模糊图像盲复原算法的凸优化模型,使得变分能量的求解不需要借助辅助手段就能够收敛到全局最优解,简化算法的复杂度,提高算法的自动化与稳健性。由于相机运动轨迹的复杂性,建立多尺度运动模糊图像盲复原的统一框架,使得图像盲复原算法从粗尺度到细尺度依次渐进执行。粗尺度上估计的点扩展函数和恢复的清晰图像作为下一精确尺度变分能量模型求解的初始值。为了增加算法的效率,引入线性分裂Bregman迭代,通过交替的迭代过程以及引入小波软阈值公式对能量方程进行加速求解。最后,研制相应软件包并探索所提出的模型和算法在实际工程领域中的应用。研究成果将为空变运动模糊退化图像盲复原提供新方法、新技术。

中文关键词: 图像处理;盲复原;运动模糊;变分方法;空间可变

英文摘要: This subject aims to research the theory and algorithm of restoration of single degraded image due to space-variant motion blurring. The versatility and computational efficiency of space-variant motion blurred image blind deconvolution is a major bottleneck to restrict its application. By the characteristics of space-variant blurring, the blind deconvolution model will be estiblished based on spatial affine transformation. The proposed convex model gets several advantages such as ensuring the convergence at optimal value during solving the energy model without introducing auxiliary method, simplifying the complexity and improving the automation and robustness of the algorithm. Because of the complexity of camera's motion trajectory, a multiscale framework will be established to enable image blind deconvolution algorithm progressive implementation from coarse scales to fine scales. The estimated kernel function and clear image are used as the initial value for solving the next variational model under the precise scale. To accelerate the whole progress, a fast method called split Bregman method is proposed by means of introducing some auxiliary variables and wavelet soft threshold formulas. Finally, we will develop corresponding software package and explore the actual engineering application of our proposed algor

英文关键词: Image processing;Blind deconvolution;Motion blurring;Variational method;Normalized smoothing term

成为VIP会员查看完整内容
0

相关内容

图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
35+阅读 · 2021年9月12日
专知会员服务
69+阅读 · 2021年3月23日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
73+阅读 · 2020年12月7日
专知会员服务
77+阅读 · 2020年12月6日
【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
28+阅读 · 2020年10月11日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
一文概括常用图像处理算法以及常用开发库
极市平台
1+阅读 · 2021年11月23日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
CVPR 2019 | 神奇的超分辨率算法DPSR:应对图像模糊降质
计算机视觉life
16+阅读 · 2019年4月25日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
40+阅读 · 2018年4月26日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
小贴士
相关VIP内容
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
35+阅读 · 2021年9月12日
专知会员服务
69+阅读 · 2021年3月23日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
73+阅读 · 2020年12月7日
专知会员服务
77+阅读 · 2020年12月6日
【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
28+阅读 · 2020年10月11日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
相关资讯
一文概括常用图像处理算法以及常用开发库
极市平台
1+阅读 · 2021年11月23日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
CVPR 2019 | 神奇的超分辨率算法DPSR:应对图像模糊降质
计算机视觉life
16+阅读 · 2019年4月25日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
40+阅读 · 2018年4月26日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员