项目名称: 材料表面拓扑形貌的细胞响应

项目编号: No.51273046

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 丁建东

作者单位: 复旦大学

项目金额: 85万元

中文摘要: 材料的诸多因素可以影响细胞行为,其中,表面形貌的效应普遍存在,并且由于形貌改变可不涉及化学成份的改变、相应的材料改性容易最终获得批准应用。但是,相比于化学和生物因素,形貌导致的强烈的生物学效应仍待发现。申请人前期研究意外发现,在微柱阵列这种特殊的拓扑表面上,细胞核有可能发生严重的自我变形,同时细胞仍保持增殖等能力;我们还通过设计不同的微柱阵列初步实现了对于细胞核形状的控制,获得了十字交叉、方形等不寻常的细胞核形状。本申请项目拟弄清楚导致细胞核变形的材料参数的范围,考察不同细胞核形状和变形程度所对应的细胞功能响应,并研究骨髓基质干细胞等不同细胞种类的响应;进一步尝试在三维多孔支架的内表面构筑拓扑形貌,并研究支架中的细胞响应行为。基质材料以PLGA等常见的可降解高分子为主。该研究有助于理解材料物理因素对于细胞的作用,为生物材料设计提供指导。

中文关键词: 生物材料;拓扑形貌;微阵列;细胞响应;细胞核变形

英文摘要: Various material cues have been revealed to influence cell behaviors. Among those cues, the effect of topography is very important, because most of materials are microscopically rough and the topography modification could be free of change of chemical composition thus the application of the modified materials is relative easy to be approved. Nevertheless, the topography effect is,as usual, not so strong as chemical and biological factors. Very recently, the research group led by the applicant found surprisingly a serious deformation of cell nuclei when cells were cultured on some micropillar arrays of PLGA, a conventional biodegradable polymer. We further designed different patterns of the micropillar arrays and successfully controlled nucleus shapes. Some unusual shapes such as cross and square have been achieved. The present grant is aimed to determine the range of the appropriate factors to enable the interesting phenomena of self deformation of cell nuclei, to explore the responses of cells with deformed nuclei of different shapes and self-deformation contents, and to examine the cell-type dependence. We also plan to develop the technique to adjust the topography of interior surfaces of three dimensional porous scaffolds, and investigate the corresponding cell responses in large porous scaffolds. The topog

英文关键词: Biomaterials;Surface Topography;Micropillar Array;Cell Response;Deformation of Cell Nuclei

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
28+阅读 · 2020年10月24日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
40+阅读 · 2020年10月4日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
56+阅读 · 2020年4月8日
 第八届中国科技大学《计算机图形学》暑期课程课件
专知会员服务
55+阅读 · 2020年3月4日
是什么原因让你不想换手机?
ZEALER订阅号
0+阅读 · 2022年2月12日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
35+阅读 · 2021年1月27日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
28+阅读 · 2020年10月24日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
40+阅读 · 2020年10月4日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
56+阅读 · 2020年4月8日
 第八届中国科技大学《计算机图形学》暑期课程课件
专知会员服务
55+阅读 · 2020年3月4日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
35+阅读 · 2021年1月27日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
微信扫码咨询专知VIP会员