项目名称: 近壁面干扰下水下无人航行器精确对线控位方法研究

项目编号: No.51309067

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 水利工程

项目作者: 张伟

作者单位: 哈尔滨工程大学

项目金额: 25万元

中文摘要: 基于水下运动母船的UUV回收,不依靠外部吊车,中继器或机械臂等辅助设备,对UUV 长期水下潜航和作业具有积极意义。针对运动母船背驮搭载UUV水下回收问题,开展近壁面干扰机理、运动建模、对线控位等理论研究,提高UUV水下回收的控制精度、安全性和可靠性。基于流体动力学理论和三维空间模型,给出近壁面干扰理论预报方法和相应数值计算结果,分析干扰机理并建立近壁面干扰下UUV六自由度运动模型;针对基于运动母船的UUV水下精确对接控制问题,提出基于鲁棒约束模型预测控制的UUV对线控位方法,通过建立预测模型、给出UUV回收过程中不同约束表示,利用对线控位技术实现水下回收;开展基于运动母船的UUV水下回收数值仿真、半实物仿真和水池实验研究,为解决UUV"隐蔽、全天候、高精度"回收控制奠定理论和技术基础。

中文关键词: 水下无人航行器;回收;对线控位;模型预测;近壁面干扰

英文摘要: The Unmanned Underwater Vehicle (UUV) recovery based on submerged moving mother ship does not need accessorial equipments that are external crane, repeaters or machine arm, which is significant to long-range underwater sailing and task of UUV. Aimed to UUV submerged recovery proplem of moving mothership back carrying, near wall constraint mechanism, dynamic modeling, positioning to line will be researched to improve the control precision, security and reliability of UUV submerged recovery. On the basis of hydrodynamic theory and three dimension space model, near wall constraint theory prediction method and relevant numerical value result will be given, then the interaction mechanism will be analyzed and the UUV six degree of freedom (DOF) dynamic model with the near wall constraint will be built. UUV positioning to line method of robust constrained model predictive control will be adopted for the UUV submerged precise docking control problem. The submerged recovery will be achieved by building predictive model, coming out different constraint denotation during UUV recovery and positioning to line. The control method will be tested in numerical simulation, hardware in loop simulation and pool trial, which can be developed to the theory and technology of "hidden, weatherproof, accurate"submerged recovery for UUV.

英文关键词: Unmanned Underwater Vehicle;Recovery;Positioning to line;model predictive;near wall constraint

成为VIP会员查看完整内容
0

相关内容

北约《军事系统的网络安全风险评估》技术报告
专知会员服务
98+阅读 · 2022年4月18日
清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
80+阅读 · 2020年12月18日
斯坦福EE364a《凸优化》课件,301页ppt
专知会员服务
95+阅读 · 2020年7月14日
多智能体深度强化学习的若干关键科学问题
专知会员服务
186+阅读 · 2020年5月24日
清华大学:从单体仿生到群体智能
专知
16+阅读 · 2022年2月9日
双11的水下战场:追着飞机换引擎的人
机器之心
0+阅读 · 2021年11月15日
已删除
将门创投
11+阅读 · 2019年7月4日
【学科发展报告】无人船
中国自动化学会
26+阅读 · 2019年1月8日
海洋论坛丨水声目标识别技术现状与发展
无人机
26+阅读 · 2018年12月17日
【紫冬分享】移动机器人视觉里程计综述
中国科学院自动化研究所
11+阅读 · 2018年10月31日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Learning to execute or ask clarification questions
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
北约《军事系统的网络安全风险评估》技术报告
专知会员服务
98+阅读 · 2022年4月18日
清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
80+阅读 · 2020年12月18日
斯坦福EE364a《凸优化》课件,301页ppt
专知会员服务
95+阅读 · 2020年7月14日
多智能体深度强化学习的若干关键科学问题
专知会员服务
186+阅读 · 2020年5月24日
相关资讯
清华大学:从单体仿生到群体智能
专知
16+阅读 · 2022年2月9日
双11的水下战场:追着飞机换引擎的人
机器之心
0+阅读 · 2021年11月15日
已删除
将门创投
11+阅读 · 2019年7月4日
【学科发展报告】无人船
中国自动化学会
26+阅读 · 2019年1月8日
海洋论坛丨水声目标识别技术现状与发展
无人机
26+阅读 · 2018年12月17日
【紫冬分享】移动机器人视觉里程计综述
中国科学院自动化研究所
11+阅读 · 2018年10月31日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员