项目名称: 基于纳米金柱阵列结构的原子力显微镜探针针尖形貌盲重构

项目编号: No.51205063

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 韩国强

作者单位: 福州大学

项目金额: 23万元

中文摘要: 随着纳米技术的快速发展,原子力显微镜(AFM)广泛应用于纳米加工与测试,是目前纳米尺度最重要的测量仪器之一。AFM图像是样品和针尖耦合作用的结果,针尖在使用过程中易产生磨损、污染和破坏,针尖形貌的变化会使AFM图像产生失真。因此,有必要对AFM探针针尖形貌进行表征与重构,这是纳米计量领域的关键问题之一。通过针尖表征可以确定针尖的具体形状和可靠性,以便对AFM图像进行修正,最终提高AFM的测量精度。目前研究主要集中在针尖表征结构的制备、表征模型和盲重构算法上。在此基础上,我们提出采用纳米金柱阵列结构对AFM针尖进行形貌盲重构和清洁,首先,设计和制备出具有高度一致性、高深宽比、大间距的超细纳米金柱阵列;实现基于纳米金柱状阵列结构的AFM探针针尖盲重构模型和算法。其次,分析AFM的扫描模式、图像分辨率和图像噪声对针尖盲重构的影响;估计AFM探针针尖在表征后的磨损程度,分析该结构对针尖的清洁效果。

中文关键词: 原子力显微镜;针尖形貌;针尖表征样品;盲重构;压缩感知

英文摘要: With the rapid development of nanotechnology, atomic force microscope (AFM), one of the most important nanoscale measurement instruments, is widely used in nanofabrication and testing areas. An AFM image is the dilation of the specimen surface with probe tip. It is easy for AFMs to be contaminated, polluted and damaged as they are used. The change of the morphology of AFM tip makes AFM images distorted. Thus, it is necessary to characterize and reconstruct the shapes of AFM tip, which is the key issue in the field of nano-metrology. The shape and reliablility of AFM tip are determined through tip characterization, which is to correct AFM images and ultimately to improve the measurement accuracy of AFM. The current research focuses on AFM tip characterizer preparation, characterization models and blind reconstruction algorithms. On this basis, the gold nanorod array structures are proposed for AFM tip morphology blind reconstruction and tip cleaning. Firstly, gold nanorod array structures with high consistency, high aspect ratio and large spacing are designed and fabricated.The nanostructures are used for characterization and blind reconstuction of AFM tip. Then the corresponding models and algorithms can be achieved. Secondly, the effects of AFM scanning modes, image resolution and image noise on blind reconstr

英文关键词: Atomic force microscopy (AFM);Tip morphology;Tip characterizer;Blind reconstruction algorithm;Compressed Sensing (CS)

成为VIP会员查看完整内容
0

相关内容

专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
31+阅读 · 2021年3月17日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
【CVPR2022】EDTER:基于Transformer的边缘检测
专知
2+阅读 · 2022年3月18日
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
英特尔4004,50岁生日快乐!
新智元
0+阅读 · 2021年11月17日
【泡泡图灵智库】HSfM: 混合运动恢复结构(CVPR)
泡泡机器人SLAM
10+阅读 · 2018年12月13日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月18日
Arxiv
0+阅读 · 2022年5月17日
Arxiv
0+阅读 · 2022年5月16日
Arxiv
15+阅读 · 2021年7月14日
小贴士
相关VIP内容
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
31+阅读 · 2021年3月17日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
相关资讯
【CVPR2022】EDTER:基于Transformer的边缘检测
专知
2+阅读 · 2022年3月18日
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
英特尔4004,50岁生日快乐!
新智元
0+阅读 · 2021年11月17日
【泡泡图灵智库】HSfM: 混合运动恢复结构(CVPR)
泡泡机器人SLAM
10+阅读 · 2018年12月13日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员