项目名称: 石墨相氮化碳聚合物新型光电转换材料研究

项目编号: No.91333110

项目类型: 重大研究计划

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 张袁健

作者单位: 东南大学

项目金额: 91万元

中文摘要: 制备来源广泛、价格便宜,光电转换效率高、性质稳定的光电转换材料是解决近中期能源问题的关键难题之一。新型半导体材料石墨相氮化碳聚合物(g-C3N4)在空气中热稳定性高(~500℃),突破了传统聚合物/有机半导体材料热稳定性差(~200℃)的局限,预期在有机太阳能电池和光电化学分解水制氢/CO2还原等光电转换领域的应用凸显优势,但是目前国际国内相关研究还非常少。本项目拟发展高效、稳定的g-C3N4新型半导体材料,建立g-C3N4分子结构和分子尺寸可控的合成方法,探索缺陷/结晶/光活性位点密度调控与光电转换性能的关系,揭示g-C3N4光生载流子的传递途径和动力学过程,提出g-C3N4在面向能源光电转换应用的适用范围。进而指导对更一般的高效、稳定的聚合物/有机半导体材料进行理性地设计与制备。该项目对于可持续发展、学科交叉和发展具有自主知识产权的光电转换材料体系具有非常重要的意义。

中文关键词: 石墨相氮化碳;可控合成;结构调控;光;电转换;

英文摘要: Development of photoelectric conversion materials, which are abundant, inexpensive, highly efficient and highly durable, is one of the key problems in addressing the energy crisis in the near future. Polymeric graphitic carbon nitride (g-C3N4) has high thermal stability in air up to 500 oC, which is much higher than that of traditional polymeric/organic semiconductors (~200 oC). Thus, it is highly anticipated that g-C3N4 may find promising photoelectric conversion applications such as solar cells and solar fuels, especially in harsh conditions, but which have been rarely investigated so far. In this project, towards high efficient and high stable semiconductors, new preparation strategies of g-C3N4 with the facile manipulation of molecular structure/size and micro/nano structure would be investigated. Moreover, the influence of defects, crystallinity, and active site density to the efficiency of the photoelectric conversion will be carefully studied. The exciton-transfer pathway and the involved kinetics will also be explored in order to guide the g-C3N4 synthesis for effective photoelectric conversion. Besides, the possible applications of g-C3N4 in the fields of photoelectric conversion will be screened. The general idea here of design and preparation of novel semiconducting g-C3N4 would greatly benefit the d

英文关键词: Graphitic carbon nitride;Controllable synthesis;Structural modulation;Optoelectronic conversion;

成为VIP会员查看完整内容
0

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
12+阅读 · 2022年3月23日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
20+阅读 · 2021年12月4日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
百页Python编程指南
专知会员服务
67+阅读 · 2021年2月16日
【IJCAI2020】图神经网络预测结构化实体交互
专知会员服务
42+阅读 · 2020年5月13日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
小贴士
相关主题
相关VIP内容
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
12+阅读 · 2022年3月23日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
20+阅读 · 2021年12月4日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
百页Python编程指南
专知会员服务
67+阅读 · 2021年2月16日
【IJCAI2020】图神经网络预测结构化实体交互
专知会员服务
42+阅读 · 2020年5月13日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员