项目名称: 基于加速网的光电混合三维互连架构设计方法研究

项目编号: No.61774086

项目类型: 面上项目

立项/批准年度: 2018

项目学科: 无线电电子学、电信技术

项目作者: 吴宁

作者单位: 南京航空航天大学

项目金额: 16万元

中文摘要: 针对大规模众核互连架构的通信能耗与延时问题,从拓扑优化、信息分流及拓扑重构等三个方面,对基于加速网的光电混合三维片上网络设计方法展开研究。研究基于加速网的光电混合片上网络拓扑构建与优化方法,均衡互连带宽分布并提高通信性能;基于光、电链路的功耗与延时模型,研究功耗与延时差异的信息分流机制,完成全局通信与局部通信的路径选择,并充分考虑光互连子网与电互连子网的流量均衡问题;针对光互连静态功耗较大的问题,研究细粒度可重构的光电混合片上网络及其在线重构方法,适应不同应用下差异的全局通信需求。通过上述关键问题研究,为构建高带宽、低延时、低能耗的众核互连架构奠定良好的理论基础。

中文关键词: 众核;互连架构;加速网;光电混合;三维片上网络

英文摘要: Aiming at the communication energy and latency problem in large scale many-core processors, this project carries out the research on design methodology of acceleration network based optical-electrical hybrid 3D interconnect architecture from three aspects, including topology design, traffic path selection strategy and topology reconfiguration. This project studies the topology generation and optimization method of acceleration network based optical-electrical hybrid network-on-chip, in order to balance the bandwidth distribution and improve the whole performance. Based on the power and latency model of optical and electrical links, power and latency differentiated path selection strategy will be studied, in order to determine how the global and local traffic will be delivered while still maintain traffic balance in optical and electrical subnet. Aiming at the high static power consumption of the optical link, fine granularity reconfigurable optical-electrical hybrid network is investigated to fit for varied global communication requirements of different applications. Based on the research on the above-mentioned key problems, it is expected that to lay a better theoretical foundations for constructing high throughput, low latency and low energy consumption interconnection architecture for many core processor.

英文关键词: Many-core;Interconnect architecture;Acceleration network;Optical-electrical hybrid;3D NoC

成为VIP会员查看完整内容
0

相关内容

专知会员服务
37+阅读 · 2021年9月8日
专知会员服务
22+阅读 · 2021年7月15日
深度学习模型终端环境自适应方法研究
专知会员服务
33+阅读 · 2020年11月13日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知会员服务
39+阅读 · 2020年8月26日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
NBF事件中心架构设计与实现
阿里技术
3+阅读 · 2022年3月25日
从托管到原生,MPP架构数据仓库的云原生实践
阿里技术
1+阅读 · 2022年1月21日
vivo AI计算平台kubernetes集群弹性伸缩实践
AI前线
0+阅读 · 2021年12月27日
KDD2021 | 基于深度图卷积网络的多样化推荐
机器学习与推荐算法
0+阅读 · 2021年8月24日
阿里巴巴全球化架构设计挑战
InfoQ
35+阅读 · 2019年11月25日
一文概览基于深度学习的超分辨率重建架构
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
17+阅读 · 2021年3月29日
小贴士
相关VIP内容
专知会员服务
37+阅读 · 2021年9月8日
专知会员服务
22+阅读 · 2021年7月15日
深度学习模型终端环境自适应方法研究
专知会员服务
33+阅读 · 2020年11月13日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知会员服务
39+阅读 · 2020年8月26日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员