项目名称: 煤基多孔炭制备中矿物质的作用机制及催化甲烷裂解行为研究
项目编号: No.U1503194
项目类型: 联合基金项目
立项/批准年度: 2016
项目学科: 管理科学
项目作者: 靳立军
作者单位: 大连理工大学
项目金额: 50万元
中文摘要: 煤基多孔炭材料在吸附、催化和电化学等领域具有广泛用途,而煤中矿物质是影响多孔炭结构和性能的重要因素。传统制备煤基多孔炭时通常选择低灰煤为碳源,导致矿物质对多孔炭结构影响以及在成孔过程中的作用机制缺乏深入认识。本项目针对上述问题以及前期研究中发现的矿物质对多孔炭的介孔形成具有类模板作用,提出通过选择不同煤样研究煤中矿物质的含量和主要组成在化学活化法制备多孔炭过程中对多孔炭结构的影响,揭示矿物质在多孔炭制备过程中的作用机制以及对炭催化甲烷裂解性能的影响规律,构建煤中矿物质与多孔炭结构和甲烷催化裂解反应性能间的关系,提供一种高介孔率煤基多孔炭的制备方法和调控机制。本项目的研究为具有不同矿物质煤(尤其是高灰分煤)的合理、有效和高值化利用提供理论指导;对于实现由髙灰煤制备具有广阔应用领域的高附加值介孔炭和高活性、长寿命甲烷催化裂解炭催化剂的研发等方面具有实际应用价值。
中文关键词: 煤;多孔炭;矿物质;甲烷催化裂解;作用机理
英文摘要: Coal-based porous carbon materials have wide applications in many fields, such as adsorption, catalysis and electrochemistry. The mineral matters in the coal obviously affect the performances of the resultant porous carbon. Because low-ash coal is usually chosen as the carbon precursor in the commercial production of porous carbon materials, it leads to the lack of explicit understanding on the function of the mineral matters during the formation of pores. This project is aimed to investigate the effect of content and main components of mineral matters in the coal on the structure of coal-based carbon by the chemical activation method and the catalytic methane decomposition of the resultant carbon. By this project, we expect to understand the action mechanism of mineral matters during the pore formation of porous carbon materials, to explore the relationship among the mineral matters in coal, the structure of the resultant carbon and the catalytic performance for the decomposition of methane, and to provide an effective preparation method for coal-based mesoporous carbon. The prospective results of this project will be helpful for reasonable, effective and high-valued utilization of coals, especially those with high content of minerals. It is also useful to expand the carbon precursors of porous carbon materials and to provide a new carbon preparation method for catalytic methane decomposition.
英文关键词: coal;porous carbon;mineral matters;catalytic methane decomposition;action mechanism