项目名称: 面向多人交互行为分析的大规模视频图像识别与理解模型
项目编号: No.61472456
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 其他
项目作者: 郑伟诗
作者单位: 中山大学
项目金额: 80万元
中文摘要: 多人交互行为分析主要是针对视频图像中与多人有关的多种交互信息进行分析和识别,是涉及公共安全问题的新兴重要课题。然而,如何挖掘多人交互行为中各种潜在的深层交互关系、如何挖掘不同交互行为之间的关联、如何面向大规模多人交互行为数据及其关联信息建模识别和搜索模型等仍有待深入研究。为此,面向大规模视频图像信息,本课题拟从如下4个主要方面展开研究:1) 发展鉴别双线性相关性学习模型以挖掘多人交互行为中内在的交互关系;2) 从大规模视频图像中挖掘潜在的多人交互行为信息及它们之间的关联信息;3) 面向大规模多人交互行为数据发展局部敏感的在线距离学习模型;4) 提出鲁棒的哈希函数学习模型,并在建模中嵌入多人交互行为之间的关联信息。此外,本研究还拟结合申请人以往的行人再标识工作,探讨研究如何利用多人交互行为的关联信息协助行人再标识。本研究旨在促进多人交互行为分析发展同时,促进相关的大规模机器学习的发展。
中文关键词: 图像识别;计算机视觉;特征提取
英文摘要: Collective activity analysis, which concerns the collective behavior of pedestrians in the scene, is a recently attractive research topic in intelligent visual surveillance. However, there are still several largely unsolved problems, including how to explore the interaction between people and between people and the environment, how to automatically mine collective activities and their relationships, and how to perform efficient recognition and searching for large scale collective activity data. In this research proposal, based on visual video images, we address the following four main aspects: 1) proposing a discriminant bilinear interaction model to mine intrinsic interactions in a collective activity; 2) proposing large scale clustering algorithms to mine potential collective activities in the data and also explore their relationships; 3) developing online locality-sensitive distance learning for large scale collective activity data; 4) developing robust hash function learning models and further embedding the relationship between collective activities into the models for large scale searching. In addition, this research proposal will also explore how collective activity information and their relationships can be used to assist person re-identification, with a close connection to investigator's previous work. While advancing collective activity analysis, the proposal can also make contribution to the development of large scale machine learning algorithms.
英文关键词: Image Recognition;Computer Vision;Feature Extraction