项目名称: 协同生态粒子群计算模型及动态优化方法研究
项目编号: No.61203371
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 自动化学科
项目作者: 介婧
作者单位: 浙江科技学院
项目金额: 24万元
中文摘要: 现实世界中普遍存在的复杂动态优化问题,要求群智能计算具有高效的动态优化性能。而自然界中的混合生态系统,对生态环境的变化具有更强的自组织性、自学习性和自适应性,其丰富的协同进化机制能够为群智能计算提供鲁棒的智能模拟原型。本项目首先对混合生态系统的共生、捕食、竞争和协作等智能行为模式进行分析,在此基础上设计高效的协同生态粒子群计算模型;其次引入有效的反馈控制机制和Baldwin学习机制,提高协同粒子群模型的优化性能,同时基于系统论、信息论和控制论的思想,对协同粒子群模型的群智能涌现机理以及自适应控制方法进行研究,并采用支撑集、随机优化、鞅理论等数学工具对所建立的模型进行理论分析;最后基于动态环境优化问题对其动态性能加以分析和改进,设计高效的监测和响应策略。本项目的研究内容,能够为群智能计算方法的模型设计、优化过程的自适应控制以及实际工程中复杂动态优化问题的求解提供有益的思路和技术工具。
中文关键词: 智能计算;群智能计算;粒子群优化;协同优化;动态优化
英文摘要: Various dynamic optimization problems in real world should been solved validly, so it's necessary to develop swarm intelligence computation with good dynamic optimization performance. Since hybrid ecology systems in nature can respond to the change of the environment with more self-organization, self-learning and self-adaptation, its cooperative evolutionary mechanisms can provide us robust intelligent models. Following the intelligent behavior modes of the hybrid ecology systems, such as prey, competition, cooperation or intergrowth, cooperative ecology-particle-swarm-optimization models are developed in the project firstly. Secondly, valid feedback and "Baldwin-based" learning mechanism are introduced to improve the performance of the cooperative models. Moveover, many researches are done based on system theory, information theory and cybernatics, including the emergence mechanism of swarm intelligence and adaptive control methods; at the same time, the convergent analysis is made based on the support set, stochastics optimization theory and martingale theory. Finally, the cooperative models are applied to solve the complex optimizations in various dynamic environment, some valid monitoring and responding strategy are developed to improve the dynamic performances. In conclusion, the researches in the project a
英文关键词: Intelligent computation;Swarm intelligence;Particle swarm optimization;Cooperative optimization;Dynamic optimization