项目名称: 算子谱理论及其在量子纠缠问题中的应用
项目编号: No.11301077
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 张世芳
作者单位: 福建师范大学
项目金额: 22万元
中文摘要: 算子谱理论是泛函分析的核心研究内容之一,而量子信息论是信息论、物理学、数学等学科结合而产生的新型交叉学科。在申请人对这两领域中若干问题都有一定研究成果的基础上,本项目拟继续研究如下三个方面问题: 第一,在前人关于算子矩阵的谱、Weyl谱、本质谱等谱种的研究基础上,应用Samuel移位重数进一步研究Browder谱和Drazin谱的C扰动问题; 第二,借助于RS和SR的性质,进一步研究 (n, k)-拟-*-仿正规算子的单值扩张性,并回答与此类算子相关的若干公开问题。 第三,结合算子谱理论中的正映射和膨胀理论以及算子矩阵技巧,研究复合系统上量子态的新的纠缠判据和纠缠度量界。 我们将努力促进算子谱理论与量子信息理论这两个领域的有机结合。
中文关键词: 谱;算子矩阵 ;仿正规算子;广义量子门;积分熵
英文摘要: Spectral theory of linear operators is one of the most important topics in functional analysis, and quantum information is a new interdisciplinary field combining physics, information science and mathematics. Based on our previous results on these two fields, this project will focus on the following three aspects: Firstly, based on the results in the literature about the spectrum, Weyl spectrum and essential spectrum for the operator matrices, we will use Samuel multiplicities to explore the perturbations of Drazin spectrum and Browder spectrum of operator matrices; Secondly, we will apply the properties of RS and SE to capture the SVEP for (n, k)-quasi-*-paranormal operators and try to answer some related open problems. Thirdly, with the aids of the theory of linear operators such as positive maps and dilation theory, and also the method of operator matrices, we propose to provide some new entanglement criteria and some bounds of the measures for quantum state of a composite system. We will make great efforts to effectively combine the two fields of spectral theory of linear operators and quantum information theory.
英文关键词: spectra ;operator matrices; paranormal operator;generalized quantum gate;differential entropy