项目名称: 闪锌矿光生电子促进微生物原位降解三氯乙烯的方法研究

项目编号: No.41272003

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 天文学、地球科学

项目作者: 李艳

作者单位: 北京大学

项目金额: 85万元

中文摘要: 本项目将在青年基金项目所取得的两个创新性进展基础上,即提出利用天然与改性闪锌矿日光催化性能原位降解氯代有机污染物的新方法以及闪锌矿与非光合化能微生物协同作用可强化光生电子的转移机制,将日光-半导体矿物-卤代烃污染物三元体系研究,进一步延伸与拓展到日光-半导体矿物-非光合微生物-卤代烃污染物多元体系研究。围绕天然与改性闪锌矿光生电子促进本源微生物生长代谢与原位降解三氯乙烯的耦合作用机制这一关键科学问题,采用矿物学、微生物学与环境科学交叉学科研究手段,开展闪锌矿与非光合微生物协同作用降解三氯乙烯的实验研究,进一步查明多元体系中闪锌矿光生电子传递的动力学机制及微生物获得光生电子能量的分子生物学与电化学响应特征,揭示闪锌矿光生电子强化本源微生物还原降解三氯乙烯的精细过程。以完善利用天然闪锌矿日光催化环境属性原位降解地下水污染物的新方法,深化与发展非光合微生物获取光生电子能量的理论认识。

中文关键词: 半导体矿物;可见光催化;光生电子;生物电化学;原位治理

英文摘要: Based on the two creative progresses in the last program of Youth Science Foundation: proposing a new method to in-situ degrade chlorinated organic pollutants by utilizing the photocatalysis of natural and modified sphalerite under sunlight, and the mechanism of photoelectrons transfer enhanced by the synergism of sphalerite and non-phototrophic chemotrophic microorganism, this project will extend the study from a ternary system of sunlight-semiconducting minerals-chlorinated hydrocarbon pollutants to a multicomponent system including sunlight-semiconducting minerals-microorganisms-chlorinated hydrocarbon pollutants. Focusing on the critical scientific issue: the growth and metabolism of indigenous microorganisms and the in-situ degradation of trichloroethylene enhanced by photoelectrons of natural and modified sphalerite, we will use interdisciplinary studying means covering mineralogy, microbiology and environmental science, to carry out an experimental research on trichloroethylene degradation by the synergism of sphalerite and non-phototrophic microorganisms, to further find out the kinetic mechanism of photoelectrons transfer in such a multicomponent system and the characteristic of molecular biology and electrochemical responses of microorganisms after capturing photoelectrons energy. Based on the above st

英文关键词: semiconducting mineral;visible-light photocatalysis;photoelectron;bioelectrochemistry;in-situ remediation

成为VIP会员查看完整内容
0

相关内容

人工智能到深度学习:药物发现的机器智能方法
专知会员服务
36+阅读 · 2022年5月6日
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
【百图生科宋乐博士】 人工智能赋能医药研发
专知会员服务
27+阅读 · 2022年3月17日
专知会员服务
12+阅读 · 2021年10月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
31+阅读 · 2021年5月7日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年5月20日
Arxiv
0+阅读 · 2022年5月19日
Arxiv
0+阅读 · 2022年5月19日
小贴士
相关主题
相关VIP内容
人工智能到深度学习:药物发现的机器智能方法
专知会员服务
36+阅读 · 2022年5月6日
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
【百图生科宋乐博士】 人工智能赋能医药研发
专知会员服务
27+阅读 · 2022年3月17日
专知会员服务
12+阅读 · 2021年10月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
31+阅读 · 2021年5月7日
相关资讯
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员