项目名称: 颗粒在确定性侧向迁移装置中的流动和分离

项目编号: No.11202185

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 叶尚军

作者单位: 浙江大学

项目金额: 26万元

中文摘要: 粒子分离是微流控芯片中的关键技术。确定性侧向迁移装置作为一种不需要预处理的连续分离方法,具有速度快,精度高,不受粒子组分浓度差异的影响等优点,具有广泛的应用前景。然而目前实验装置的设计主要依靠经验,尚缺乏理论指导。本项目的研究内容包括: 1)通过研究刚性球形颗粒在圆柱阵列中的运动特性,得到临界直径跟槽道参数之间的定量关系,推广Davis等人从实验中得到的拟合公式;2)研究三角形,长方形等非轴对称障碍物阵列对颗粒分离的影响;3)研究红细胞,布氏锥虫等柔性粒子在侧向迁移装置中的运动特性,并分析壁面对分离效果的影响。本项目的研究成果将为更有效地设计侧向迁移装置提供支持。

中文关键词: 确定性侧向迁移;生物颗粒;微管道;细胞分离;

英文摘要: Separation of cells and particles plays an important role in microfluidic systems. The Deterministic Lateral Displacement (DLD) device, introduced by Sturm's group in Princeton University as a continuous separation method, is quite impressive in terms of speed and resolution despite the extreme concentration difference. This method is based on inherent properties of the particles and device, and no treatment is required before the test. Separation occurs if, under careful design, the larger particles are travelled diagonally through the device, which is called "direction rocking mode", while the small particles are followed the streamline and so called "zig-zag mode". To the deformable particles, several flow patterns have been found in the laboratory. Also, significant separation between red blood cell and parasitic protozoa of the Trypanosoma brucei has been found by optimizing the depth of the channel of DLD device. In this proposal, first, the rigid particle flow and separation in the DLD device will be studied by the Distributed Lagrange Multiplier based Fictitious Domain method (DLM/FD). The empirical equation for the critical diameter of the particle from fitting of the experiment results by Davis will be examined and be generalized. Secondly, separation in the triangular or rectangular obstacles will be

英文关键词: Deterministic lateral displacement;bioparticle;microchannel;cell separation;

成为VIP会员查看完整内容
0

相关内容

《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
卷积神经网络中的注意力机制综述
专知会员服务
75+阅读 · 2021年10月22日
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
42+阅读 · 2021年2月8日
【ACM MM2020】对偶注意力GAN语义图像合成
专知会员服务
35+阅读 · 2020年9月2日
一文带你了解语音信号处理技术
PaperWeekly
9+阅读 · 2022年1月26日
语音合成:模拟最像人类声音的系统
PaperWeekly
2+阅读 · 2021年11月30日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
17+阅读 · 2022年1月11日
Arxiv
27+阅读 · 2021年11月11日
小贴士
相关主题
相关VIP内容
《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
卷积神经网络中的注意力机制综述
专知会员服务
75+阅读 · 2021年10月22日
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
42+阅读 · 2021年2月8日
【ACM MM2020】对偶注意力GAN语义图像合成
专知会员服务
35+阅读 · 2020年9月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员