项目名称: 面向交互式情感计算的多模态信息融合建模研究
项目编号: No.61304262
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 徐超
作者单位: 天津大学
项目金额: 22万元
中文摘要: 情感计算是人机交互等智能监护的难点,课题拟在交互情境中通过表情、语音语调和生理信号等多模态信息融合建模研究情感体验分布。课题采用模型化设计和形式化分析结合的解决方案,针对情感计算的不确定性和多模态信息依赖特性,提出协同依赖的情感体验与信息融合模型,具体对情境多模态信息处理、情感-动因网和情感分布的信息融和展开研究,包括:设计交互情境中动因感知和情感状态分析的形式化方法;研究情境、多模态信息和情感的内在联系,抽离表情、语音语调和生理信号等,提出多模态融合的情感-动因网模型,实现情感知识表示、因果分析和预测推理;基于情感-动因网,提出情感信息的协同依赖模型,引入多模型协同的信息融合框架,提高情感分析客观性。研究意义:提出交互情境中情感体验及其信息融合模型,为智能"人-机-情境"交互和行为决策提供理论和技术支撑;构建应用场景和系统原型,对理论模型和技术方案进行有效性和可行性验证。
中文关键词: 情感体验分布;协同依赖;人-机-情境;信息融合;
英文摘要: Affective computing is an important step in human-computer interaction and intelligent monitoring that can improve the rationality for the seamless interaction. In this proposal, we study the inner mechanism between facial expression, voice tone, physiological signals and affective experience based on interactive context and multi-modal information fusion. Due to the complexity and uncertainty of affective computing, it decreases the analysis accuracy. A novel approach for affective experience evaluation in interactive environment is presented to solve the significance of those findings. From the view of cognitive intelligence, interactive environment, multi-modal information fusion, affective-factor net and affective experience distribution modal are proposed. The models can improve the analytical skills through the models' synergetic interactions. Based on affective-factor net and their cooperative interaction, multi-modal information such as facial expression, voice tone and physiological signals are applied to do synergetic dependence evaluation and to construct affective experience distribution. As well as the algorithms of multi-modal information fusion, it can improve the objectivity quality of the affective experience distribution topology including knowledge representation, causal analysis and predictio
英文关键词: Affective Experience Distribution;Synergetic Dependence;Human-Computer-Context;Information Fusion;