项目名称: CO2浓度与温度升高对野生和栽培青蒿生长代谢影响的研究

项目编号: No.41301209

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 天文学、地球科学

项目作者: 朱春梧

作者单位: 中国科学院南京土壤研究所

项目金额: 26万元

中文摘要: 全球每年约3-5亿人次感染疟疾,其中超过1百万人死亡。青蒿素是最有效的抗疟药物,其唯一的来源是从药用植物青蒿中提取。由于野生青蒿的产量有限,目前正大力推广种植经驯化培育的栽培品种。大气CO2浓度和温度均是影响植物生长代谢的关键因子,两者的升高必然影响未来青蒿素的供应。本项目将利用FACE试验平台, 研究大气CO2浓度与温度升高对野生和栽培青蒿生长代谢的影响。通过分析青蒿各生育期有效部分生物量和青蒿素含量,明确最佳的收获期和青蒿素产量;通过HPLC、荧光PCR、扫描电镜、透射电镜和分光光度计等分析手段,研究青蒿素生物合成酶与前体、CN代谢、活性氧、腺毛状分泌腺形成的响应,揭示青蒿素合成响应的机制。另外综合分析过去百年大气CO2浓度和温度升高对野生青蒿叶内的成分已产生的影响,进一步补充和验证FACE的研究结果。本项目为未来青蒿的种植提供指导,也为预测未来青蒿素的供应提供科学依据。

中文关键词: 全球变化;CO2升高;疟疾;黄花蒿;青蒿素

英文摘要: Each year, about 300-500 million people are infected with malaria worldwide, causing over 1 million deaths. Artemisinin is the most effective treatment for malaria, which can only be extracted from a medicinal plant (Artemisia annua). The cultivar of Artemisia annus was cultivated from wild species which has the very limited yield, and is being promoted to plant extensively for getting the more artemisinin. Atmospheric [CO2] and temperature can heavily influence plant growth and metabolism, so the responses of artemisia annua growth and its active ingredient synthesis will directly determine the artemisinin supply in the future. In this study, we will use the FACE experiment platform to examine the growth and metabolism of the wild and cultivated Artemisia annus in response to elevated [CO2] and temperature. We will test plant biomass and the active ingredient content at different growth stages, to obtain the optimum sampling period and effective production of artemisinin; we will examine the process of artemisinin synthetical enzymes and forebody, C and N metobolism, active oxygen and glandular trichome development, to learn the mechanisms of response for artemisinin synthesis, by means of using HPLC, fluorescence of PCR, scanning electron microscopy, transmission electron microscopy and spectrophotometer. In a

英文关键词: Global change;elevated CO2;Malaria;Artemisia annua;Artemisinin

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】基于样例查询机制的在线动作检测
专知会员服务
10+阅读 · 2022年3月23日
【博士论文】分形计算系统
专知会员服务
34+阅读 · 2021年12月9日
专知会员服务
31+阅读 · 2021年7月2日
德勤发布《2021年技术趋势》161页pdf(附下载)
专知会员服务
97+阅读 · 2021年4月16日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
无生命的AI算不上「智能」
AI前线
0+阅读 · 2022年2月21日
自动驾驶:是炒作还是现实?
AI前线
0+阅读 · 2022年1月25日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
19+阅读 · 2021年6月15日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员