项目名称: 局域表面等离子共振放大的光子晶体快速筛查农药残留技术研究

项目编号: No.81472985

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 医药、卫生

项目作者: 彭媛

作者单位: 中国人民解放军军事科学院军事医学研究院

项目金额: 65万元

中文摘要: 食品中农药残留问题严重影响人类健康,简单有效的快速筛查技术是保障食品安全的有效手段。本课题组利用分子印迹聚合物构建了仿生光子晶体,成功实现了小分子污染物的无试剂快速筛查,但检测灵敏度较低限制了其进一步应用。本课题拟以食品中常见农药残留阿特拉津、对硫磷、久效磷等为代表,筛选和制备不同粒径的贵金属纳米颗粒作为信号放大元件,通过调控金属纳米颗粒的性能对局域表面等离子共振(LSPR)的近场电场强度分布进行调制,实现检测信号的有效放大,阐明基于LSPR放大效应的信号调控机制,提高仿生光子晶体的检测灵敏度并实现可视化检测,构建基于LSPR放大的光子晶体农药残留高灵敏快速筛查技术,为局域表面等离子共振理论在光子晶体传感技术中的应用奠定基础,并为建立用于农药残留高灵敏快速筛查的仿生光子晶体技术提供方法学支撑。

中文关键词: 光子晶体;局域表面等离子共振;纳米材料;农药残留;快速检测

英文摘要: Pesticide residues in foods seriously affect human health, thus simple, effective and rapid screening techniques are required. Our group introduced molecularly imprinted technique into photonic crystals to successfully establish detecting method of small molecule contaminants, but the low sensitivity limits its further application. This research is to establish a highly sensitive system for pesticide residues (parathion, atrazine, monocrotophos, etc.) detection using molecularly imprinted photonic crystal doped with noble metal nanoparticles which can amplify the signals based on localized surface plasma resonance(LSPR). Noble metal nanoparticles of different size and composition are prepared to study the LSPR effect. The near-field intensity distribution of LSPR is investigated to obtain the optimal signal amplification and improve the detection sensitivity of photonic crystal. The results of this research will lay a theoretical foundation of the application of LSPR in photonic crystal sensing system. Furthermore, they will provide methodological support for the establishment of a highly sensitive and rapid screening method of pesticide residues using photonic crystal.

英文关键词: photonic crystal;localized surface plasmon resonance;nano materials;pesticide residue;fase detection

成为VIP会员查看完整内容
0

相关内容

6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
图对抗防御研究进展
专知会员服务
38+阅读 · 2021年12月13日
数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
35+阅读 · 2020年9月27日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
79+阅读 · 2019年10月12日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
数据中心传感器技术应用 白皮书
专知
0+阅读 · 2021年11月13日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关VIP内容
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
图对抗防御研究进展
专知会员服务
38+阅读 · 2021年12月13日
数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
35+阅读 · 2020年9月27日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
79+阅读 · 2019年10月12日
微信扫码咨询专知VIP会员