项目名称: ZnO纳米结构中激子和光学声子的耦合调控及其发光特性

项目编号: No.11504364

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 丁怀义

作者单位: 中国科学技术大学

项目金额: 24万元

中文摘要: 激子与光学声子的相互作用是半导体发光中的一个重要物理过程,对半导体室温带边发光的峰形和峰位都有显著的影响。氧化锌是一种典型的容易受到该过程影响的直接宽带隙半导体,近年来人们已发现与氧化锌激子与光学声子相互作用强度关联的众多因素,包括缺陷/杂质、表面粗糙度、纳米结构的尺寸和晶面等,但是对相关机理的研究仍然存在较大争议。除此之外,诸如氧化锌激子第一声子伴线的峰位移动现象、其来源究竟是LO还是TO声子的问题,目前还没有被很好的理解。本项目拟通过调节氧化锌纳米结构的内禀物理参量和外在环境参量,利用空间分辨和角分辨光致荧光和阴极射线荧光测量技术,较为系统地研究若干种影响氧化锌激子与光学声子相互作用的物理过程及其机理,探究激子第一声子伴线峰的来源和峰位移动的原因,最终实现对该相互作用的有效调控。该项目有利于提高人们对氧化锌激子发光相关物理过程的认识,也可为设计氧化锌基光子器件提供物理基础和设计思路。

中文关键词: 氧化锌;激子;光学声子;相互作用

英文摘要: Exciton and optical-phonon interaction is an important physical process in semiconductor luminescence that significantly affects the spectral features of the band-edge emission. As a typical direct and wide bandgap semiconductor, ZnO luminescence is susceptible to the exciton and optical-phonon interaction. In recent years various factors have been found to be closely related to the ZnO exciton and optical-phonon interaction, such as defect/impurity, surface roughness, size, crystal face, and etc. However, controversies about the physical mechanism still exist. In addition, the phenomenon of energy shift in the exciton’s first phonon relica, as well as its origin (i.e., LO or TO), so far have not been well understood. This project is to study the various physical processes and mechanisms that affect the ZnO exciton and optical-phonon interaction, which will be conducted by systematical controlling the intrinsic physical properties and external surrounding environments of the ZnO nanostructures, through measuring the spatially- and angularly-resolved variable- temperature photoluminescence and cathodoluminescence. We hope to quantify the energy shift and spectral contribution of the exciton’s first phonon relica and identify its origin, and to achieve the capability to manipulate this interaction. This project is helpful for a further and better understanding of the ZnO exciton luminescence, which also can be very useful for the design of ZnO-based photonic devices by providing the necessary physics and more designing ideas.

英文关键词: ZnO;exciton;optical phonon;interaction

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
23+阅读 · 2021年8月1日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Dynamic Network Adaptation at Inference
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
23+阅读 · 2021年8月1日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员