项目名称: 面向GPU的体系结构敏感型数值算法优化技术研究

项目编号: No.61202094

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 计算机科学学科

项目作者: 张纪林

作者单位: 杭州电子科技大学

项目金额: 24万元

中文摘要: 随着多核技术的不断发展,GPU已经成为高性能计算的主流平台,与以往相比,该系统的体系结构具有更多的存储层次和多样化的线程管理,传统的优化技术已经不能满足体系结构敏感型数值算法的性能要求。该类算法必须重构以实现深度挖掘自身的并行性、局部性和非规则计算特性,通过充分发挥GPU的体系结构优势,提高程序性能。为此,本课题面向GPU体系结构,通过定量的测试和分析影响体系结构敏感型数值算法执行效率的各种因素,形成GPU性能模型,刻画体系结构敏感性指标。在此基础上,研究体系结构敏感型数值算法的多层次优化方法及自动调优策略,改善访存局部性、线程间负载均衡、数据读写和流处理方式。研究规则计算和非规则计算统一的性能优化方法。并且将GPU性能模型用于指导体系结构敏感型数值算法的调优方法和策略。本项目研究成果可以很好地提高体系结构敏感型数值算法执行效率,具有重要的理论意义和应用价值。

中文关键词: GPU体系结构;数值算法;性能模型;自动调优;非规则计算

英文摘要: GPU has been well recognized as the main platform for high performance computing along with the development of multi-core techniques. Its essential features in multilevel memory hierarchy and various thread management have distinguished GPU from any other previous computing platforms, such that the traditional optimization techniques cannot meet the high performance demand of arthitecture-sensitive numerical algorithms in real practices.To take full advantage of GPU's unique architecture, we must research the new optimization methods to make better the parallelism, locality and irregularity feature of numerical algorithms. In this work, we take quantitative measurement and analysis of various factors that affect the performance of arthitecture-sensitive numerical algorithms on GPU, and build the GPU performance model being described by these factors. Furthermore, targeting on the arthitecture-sensitive numerical algorithms, we breaking through traditional concept to study the autotuner technology to optimize the parallelism on multi-layers of the architecture in order to improve the locality of data access, thread load balancing and better data stream processing. We would like to study the unified optimization technique that serves both the regular and irregular computations, and guide the optimization of archit

英文关键词: GPU architecture;Numerical algorithms;performance model;autotuner;irregular computing

成为VIP会员查看完整内容
1

相关内容

深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
计算体系架构研究综述与思考
专知会员服务
65+阅读 · 2022年3月21日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
专知会员服务
78+阅读 · 2020年8月4日
专知会员服务
80+阅读 · 2020年6月20日
【2021图灵奖】授予: 高性能计算先驱Jack Dongarra
深度强化学习实验室
0+阅读 · 2022年3月31日
AI计算与GPU的不解之缘,偶然中的必然
THU数据派
0+阅读 · 2022年3月12日
工程实践 | CUDA优化之LayerNorm性能优化实践
极市平台
0+阅读 · 2022年1月10日
【博士论文】分形计算系统
专知
2+阅读 · 2021年12月9日
平台积分体系设计方案
PMCAFF
31+阅读 · 2018年11月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
计算体系架构研究综述与思考
专知会员服务
65+阅读 · 2022年3月21日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
专知会员服务
78+阅读 · 2020年8月4日
专知会员服务
80+阅读 · 2020年6月20日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员