项目名称: 导电基底上直接生长的半导体纳米线及其复合结构用于太阳能光电化学分解水研究

项目编号: No.21503109

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 分析化学

项目作者: 何承雨

作者单位: 南京工业大学

项目金额: 21万元

中文摘要: 利用太阳能光电化学分解水来制备氢气可以实现可持续的能量循环,对解决全球面临的能源和环境问题具有巨大的应用价值。因此,人们一直致力于寻找廉价的材料来实现高效电催化和光电化学分解水。随着纳米技术的发展,半导体纳米线材料因具有利于光子捕获和载流子传输的独特结构,在太阳能光电化学分解水方面日益引起关注。本项目利用半导体纳米线的优势,将光电化学分解水和电催化分解水相结合,设计并制备导电基底上直接生长的ZnO等半导体纳米线与新型电催化材料(“Co-Pi”或“O2–CoCat”)的复合结构,实现二者的协同作用,从而达到利用太阳能高效分解水的目的。在此基础上,优选高效且廉价的阳极复合材料和阴极复合材料,将二者通过导电基片直接相连接,设计无导线的新型光电化学系统,使其类似“树叶”一样具备太阳能捕获和转换的功能,从而实现人工模拟光合作用。本项目的研究为利用纳米技术解决清洁能源问题提供了新的途径。

中文关键词: 光电化学分解水;半导体纳米线;复合结构;导电基底

英文摘要: Photoelectrochemical splitting of water into hydrogen and oxygen using solar energy could provide a renewable energy cycle to address the global energy problem. For a long time, there has been much research effort in identifying materials with efficient electrocatalytic and photoelectrochemical water splitting capability. Recent advances in nanofabrication have enabled the adoption of nanostructured semiconductors in photoelectrochemical cells. Especially, nanowire geometry has attracted increasing interests for its unique structure to ensure effective harvesting of the photons and effective photocurrent collection. In this project, we design and fabricate the composite materials composed of semiconductor nanowires, such as ZnO nanowires directly grown from and on brass substrates, and co-catalysts (“Co-Pi” or “O2–CoCat”) for the purpose of water splitting based on the synergistic electrocatalytic and photoelectrochemical actions. Further, we design the photoelectrochemical devices by the integration of the optimal anodic composite materials and the cathodic ones without connecting wires. The wireless schemes mimic the photosynthetic process within a leaf that converts the energy of sunlight into chemical energy by splitting water to produce O2 and hydrogen equivalents. This project provides a new way for the development of clean energy by using nanotechnology.

英文关键词: Photoelectrochemical Water Splitting;Semiconductor Nanowire;Composite Materials;Conductive Substrate

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
31+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
56+阅读 · 2021年5月3日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
31+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员