项目名称: 大口径光学元件中频误差的形成机理及控制关键技术研究

项目编号: No.51275433

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 郭隐彪

作者单位: 厦门大学

项目金额: 90万元

中文摘要: 当前光学元件的超精密加工装备与技术已取得了突破性的进展,已能加工出超光滑和高面形精度的大口径光学元件。但遗留的突出问题是:计算机控制抛光在大口径光学元件表面产生大量的中频误差,严重影响光学元件的光学性能与应用潜力。本课题为解决光学精密加工领域的中频误差问题,以实现大口径光学元件的高效和低中频误差加工为目标,首先研究大口径光学元件计算机控制抛光加工的中频误差形成机理;然后研究大口径光学元件中频误差的检测、识别与评价关键技术;再次研究大口径光学元件计算机控制抛光的主从和反馈补偿控制技术;最后研制新型的外圆型2轴计算机控制气囊抛光原理装置,规划抛光加工工艺,进行原理性抛光实验,检测和评价加工质量,验证中频误差的控制方法和软件技术。本研究不仅丰富了计算机控制抛光加工技术理论,且可为大口径光学元件的高效与低中频误差精密加工提供切实可行的理论支持和技术手段,显著提高光学元器件的精度水平。

中文关键词: 大口径光学元件;中频误差;形成机理;计算机控制抛光;误差控制

英文摘要: Today, the precision engineering equipment and technology have experienced the breakthrough development. The large scale optical surface can be manufactured with the ultra smooth and high-form precision. But the remaining unsolved problem is that the computer controled polishing technique can result servious middle frequency error, which can infulence the performance of the optical devices. This projcet aims to solve the middle frequency error problem encountering in the advanced optical engineering field. Firstly, the mechanism of middle frequency error is studied in the computer controlled polishing of larger scale optical surface. Secondly, the technology for measuring and indentification the middle frequency error is explored. Then the evaluation technique is also presented. Thirdly, both the active control technology and feedback compensation technology are studied concerning the computer controlled polishing of large scale optical surfaces. Fourthly, a novle computer controlled polishing equipment, the 2-axial peripheral bonnet polishing machine, is presented and designed. The polishing technology is also researched and planned. Finally, the polishing experiment of large scale optical surface is conducted to verify the controlling strategy of middle frequency error. This research not only can rich the the

英文关键词: Large-aperture optical lens;middle spatial frequency error;formation mechanism;computer polishing;error control

成为VIP会员查看完整内容
0

相关内容

数字孪生模型构建理论及应用
专知会员服务
211+阅读 · 2022年4月19日
军事知识图谱构建技术
专知会员服务
115+阅读 · 2022年4月8日
城市数字孪生标准化白皮书(2022版)
专知会员服务
171+阅读 · 2022年1月12日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
29+阅读 · 2021年9月14日
专知会员服务
20+阅读 · 2021年8月23日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
286+阅读 · 2021年4月8日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
90+阅读 · 2020年10月30日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
57+阅读 · 2020年7月12日
自动驾驶技术解读——自动驾驶汽车决策控制系统
智能交通技术
29+阅读 · 2019年7月7日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【工业智能】电网故障诊断的智能技术
产业智能官
33+阅读 · 2018年5月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
10+阅读 · 2018年3月23日
小贴士
相关VIP内容
数字孪生模型构建理论及应用
专知会员服务
211+阅读 · 2022年4月19日
军事知识图谱构建技术
专知会员服务
115+阅读 · 2022年4月8日
城市数字孪生标准化白皮书(2022版)
专知会员服务
171+阅读 · 2022年1月12日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
29+阅读 · 2021年9月14日
专知会员服务
20+阅读 · 2021年8月23日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
286+阅读 · 2021年4月8日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
90+阅读 · 2020年10月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
10+阅读 · 2018年3月23日
微信扫码咨询专知VIP会员