项目名称: 基于BMA的降低地下水污染场址评估不确定性研究
项目编号: No.41302201
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 天文学、地球科学
项目作者: 姜蓓蕾
作者单位: 水利部交通运输部国家能源局南京水利科学研究院
项目金额: 25万元
中文摘要: 在地下水污染场址调查和整治等各阶段,参数取值和概念模型的不确定性往往导致污染场址的风险评估结果存在较大的不确定性。已有的研究较多针对参数的不确定性开展,而对概念模型的不确定性研究很少。本项目拟针对水文地质结构的不确定性,建立基于贝叶斯模型平均的多(概念)模型分析框架,通过将其与污染运移模型进行耦合,降低评估结果的不确定性,同时根据贝叶斯理论,通过采样获取的新增信息更新空间变异性参数的先验概率分布,量化不确定性的降低程度及由采样获取的新增信息的数据价值。选择南京市燕子矶地区某地下水污染场址,对已建立的贝叶斯平均多模型框架进行实例验证。研究成果可为污染场址的调查采样设计及污染场址整治决策方案的制定提供有力技术支撑。
中文关键词: 贝叶斯模型平均;风险评估;数据价值;向导点-正则化方法;不确定性
英文摘要: There exists significant uncertainties for the results of risk assessment due to parametric uncertainty and model uncertainty during the periods of groundwater contaminant site investigation and remediation. Most of the previous studies focused on the parametric uncertainty, however, the conceptual model uncertainty is usually omitted. In this study, we establish a muti-model analysis framework based on Bayesian Model Averaging (BMA) coupling with the groundwater contaminant transport simulation model, which is effective for reducing model and parametric uncertainties for the results of risk assessment. Meanwhile, the new sampling data-worth is quantified by updating the prior probabilities of the parameter distributions according to the Bayesian theory. The developed framework is validated by a groundwater contaminant site located in the Yanziji Area, Nanjing. This study could provide technical support for the decision-making on the sampling design and the remediation plan.
英文关键词: Bayesian Model Averaging;Risk Assessment;data value;pilot-points and ragularization method;uncertainty