项目名称: GaAs纳米线阵列光阴极制备及其理论研究

项目编号: No.61261009

项目类型: 地区科学基金项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 邹继军

作者单位: 东华理工大学

项目金额: 45万元

中文摘要: 半导体纳米线阵列具备半导体薄膜材料所不具有的光子吸收充分、光反射小、光电子输运到材料表面的距离短等特性,这些特性非常有利于光电发射。本项目拟利用上述特性,开展GaAs纳米线阵列光阴极制备及其理论研究,通过MOCVD外延生长和金属辅助化学刻蚀法制备GaAs纳米线阵列材料,表征分析其光子吸收与电子输运特性,构建纳米线光阴极能带结构模型;基于纳米线阵列光电特性以及能带结构模型的研究,建立GaAs纳米线阵列光阴极光电发射理论模型;在超高真空激活系统中制备GaAs纳米线阵列光阴极,利用原位表征分析技术,建立GaAs纳米线NEA表面模型;测试不同光照角度下的阴极光谱响应曲线,利用光电发射理论进行仿真分析,揭示GaAs纳米线阵列光阴极光电发射机理,优化阴极制备工艺,得到高性能GaAs纳米线阵列光阴极。GaAs纳米线阵列光阴极在太阳能、微光夜视、光电探测、电子源等领域具有很好的应用前景。

中文关键词: 纳米线阵列;光阴极;干法刻蚀;光电发射;

英文摘要: Semiconductor nanowire arrays have already been shown to have a high absorption coefficient or excellent light trapping, low reflective loss and a short distance that electrons need to travel along nanowire diameter to the wire surface compared to semiconductor thin film. These properties are very useful for photoemission. In this project, we will investigate the preparation and photoemission theory of GaAs wire-array photocathodes. GaAs nanowire arrays will be grown by metal-organic chemical vapor deposiyion (MOCVD) and be synthesized using metal-assisted chemical etching (MacEtch). The photon absorption properties and electron transport properties of nanowire arrays will be characterized and the band structure of nanowires will be constructed. Based on these optoelectric properties and band structure of the nanowire arrays, we will establish a photoemission theory model for GaAs wire-array photocathode. GaAs wire-array photocathodes will be prepared in an ultra-high vacuum activation chamber. Based on the application of in-Situ characterization techniques to the study of nanowire photocathode surface, we will construct a NEA surface model for GaAs nanowire photocathodes. The spectral response of the nanowire photocathodes will be measured using spectral response measuring instrument and analyzed using photoemi

英文关键词: nanowire array;photocathode;dry etching;photoemission;

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
41+阅读 · 2021年7月10日
《Golang修养之路》干货书
专知会员服务
34+阅读 · 2021年5月8日
【ICLR2021】自监督蒸馏学习视觉表示
专知会员服务
34+阅读 · 2021年4月14日
少标签数据学习,61页ppt,宾夕法尼亚大学
专知会员服务
37+阅读 · 2020年8月27日
基于视觉的三维重建关键技术研究综述
专知会员服务
164+阅读 · 2020年5月1日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【学科发展报告】无人船
中国自动化学会
28+阅读 · 2019年1月8日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月21日
小贴士
相关VIP内容
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
41+阅读 · 2021年7月10日
《Golang修养之路》干货书
专知会员服务
34+阅读 · 2021年5月8日
【ICLR2021】自监督蒸馏学习视觉表示
专知会员服务
34+阅读 · 2021年4月14日
少标签数据学习,61页ppt,宾夕法尼亚大学
专知会员服务
37+阅读 · 2020年8月27日
基于视觉的三维重建关键技术研究综述
专知会员服务
164+阅读 · 2020年5月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员