项目名称: 涡轮叶片发散冷却结构微细颗粒沉积机制及其影响

项目编号: No.51276090

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 能源与动力工程

项目作者: 张靖周

作者单位: 南京航空航天大学

项目金额: 80万元

中文摘要: 致密气膜孔发散冷却是一种高效的涡轮叶片冷却方式,在工程应用中面临着冷却通道特征尺寸微小化所带来的微细颗粒沉积堵塞风险。如何在获取高冷却效益的同时,有效规避微细颗粒的危害性沉积行为,是致密气膜孔发散冷却结构潜在应用价值体现的关键。本项目针对这一研究背景,系统地开展致密发散射流和叶栅通道主流耦合流场中微细颗粒的扩散特性、致密气膜孔发散冷却表面微细颗粒的沉积模型和沉积规律、微细颗粒的沉积形貌对致密气膜孔发散冷却性能的影响规律等基础科学问题的理论和实验研究。试图通过本项目的研究,建立致密气膜孔发散冷却表面微细颗粒的沉积模型和沉积形貌构建方法,揭示致密发散射流和叶栅通道主流耦合流场中微细颗粒的扩散-沉积特性与涡轮叶片冷却性能之间的内在关联,并通过优化冷却通道内气流流动的组织方式有效规避致密气膜孔发散冷却结构的技术风险。项目研究具有学科交叉特色和重要的学术和应用价值。

中文关键词: 涡轮叶片;发散冷却;微粒沉积;冷却特性;气固两相流

英文摘要: To improve the efficiency of gas turbine engines the gas inlet temperature has to be increased beyond the failure temperature of the turbine blade and vane material. In other words, gas turbine blades have to be protected from the hot gases using a thin fluid film that is wrapped around the blade. Compared to other advanced cooling techniques, effusion cooling is a competitive choice. Effusion cooling can significantly enhance convective heat transfer (cooling) inside a large number of inclined holes before the cooling air forms a cooling film on the hot-side surface. As the film hole takes on mini-scale, the effusion cooling face serious blockage risk owing to fine partice ingestion and deposition. How to avoid this technology risk is a key problem for the potential application. The present project seeks to identify several major issues for the advancement of turbine blade effusion cooling. These issues are mainly focus on: the particle diffusion in the coupling flow field between effusion jets and main flow, the particle deposition model and deposition mechanism on effusion cooling configuration, and the particle deposition effects on effusion cooling performance. The project objectives are outlined as following: build up particle deposition analysis model and depositon process analysis method on effusion cool

英文关键词: turbine blade;effusion cooling;particle deposition;cooling performance;gas-solid two-phase flow

成为VIP会员查看完整内容
0

相关内容

NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
轻量化神经网络卷积设计研究进展
专知会员服务
55+阅读 · 2021年10月24日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
44+阅读 · 2021年5月24日
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
59+阅读 · 2021年5月3日
专知会员服务
109+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
95+阅读 · 2021年3月25日
专知会员服务
41+阅读 · 2021年2月8日
「AI番茄」背后,科技农人的新图谱
36氪
0+阅读 · 2022年2月9日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
YOLOv5 深度可视化解析
CVer
27+阅读 · 2020年8月16日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
33+阅读 · 2018年7月14日
已删除
将门创投
12+阅读 · 2018年6月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
14+阅读 · 2021年11月27日
小贴士
相关主题
相关VIP内容
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
轻量化神经网络卷积设计研究进展
专知会员服务
55+阅读 · 2021年10月24日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
44+阅读 · 2021年5月24日
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
59+阅读 · 2021年5月3日
专知会员服务
109+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
95+阅读 · 2021年3月25日
专知会员服务
41+阅读 · 2021年2月8日
相关资讯
「AI番茄」背后,科技农人的新图谱
36氪
0+阅读 · 2022年2月9日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
YOLOv5 深度可视化解析
CVer
27+阅读 · 2020年8月16日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
33+阅读 · 2018年7月14日
已删除
将门创投
12+阅读 · 2018年6月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员