项目名称: 基于微流打印的共轭聚合物半导体薄膜制备及其微观结构调控机制研究

项目编号: No.51503035

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 何中媛

作者单位: 东华大学

项目金额: 20万元

中文摘要: 开发新型成膜方法,实现微观结构可控构筑,进而获得有利于载流子快速传导的共轭聚合物半导体薄膜是制备高性能有机电子器件的重要途径。申请者前期工作表明微流场下可以获得具有高结晶高取向微观结构的P3HT流体,但采用传统旋涂成膜后难以保持有利于载流子快速传导的长程取向微观结构,因而亟需开发新型成膜方法。微流打印成膜是一种获取具有高结晶高取向微观结构共轭聚合物半导体薄膜的有效手段,但微流场下聚合物结晶及取向的演变过程仍不清晰,微流打印刀片对薄膜微观结构的调控机制仍需深入探索。本申请旨在利用同步辐射SAXS、GIWAXS等技术,结合常规表征手段原位考察微流场下共轭聚合物半导体结晶及取向动态演变过程,获得高结晶高取向微观结构的流体加工参数;结合实验数据,利用计算机流体模拟设计出可用于微流打印成膜的打印刀片,实现薄膜微观结构可控构筑;建立加工参数与迁移率构效模型,为高迁移率共轭聚合物半导体薄膜制备提供参考。

中文关键词: 微流打印;微流加工;同步辐射;微观结构;共轭聚合物半导体

英文摘要: Developing new film construction methods to prepare conjugated polymer films with controllable microstructure as well as high charge carrier mobility is a key route for the fabrication of organic electronics with high performance. P3HT fluids with highly crystallized and oriented microstructures were successfully obtained by a microfluidic processing method in our previous work. However, new film construction methods are in high demand, owing to the lack of maintaining long-range orientation microstructure from conventional methods, such as spin-coating. Microfluidic printing is an effective method to achieve conjugated semiconductor polymer films with high degrees of crystallization and orientation. The evolution and mechanism of the polymer microstructure formation through microfluidic processing and the effects of the print blade design on the film microstructure need to be investigated further. This study will take advantage of SAXS and GIWAXS at the Shanghai Synchrotron Radiation Facility, in combination with other in-situ characterization methods to investigate the evolution of the crystallization and orientation of the semiconductor polymer under microfluidic flow. In this process, the optimal processing parameters for obtaining polymer fluids with high degrees of crystallization and orientation can be obtained. Blades that promote the formation of highly crystallized and orientated microstructures will be designed based on both the experimental data and computer simulation with the fluid workstation. Through controlling the fluid processing parameters and the design of the blade for microfluidic printing with special structures, semiconductor polymer films with controllable microstructures can be fabricated. Finally, the structure-performance (“microfluidic processing mobility”)model will be established for the fabrication of conjugated semiconductor polymer film with high mobility.

英文关键词: Microfluidic Printing;Microfluidic Processing;Synchrotron Radiation;Microstructure;Conjugated Polymer Semiconductor

成为VIP会员查看完整内容
0

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员