项目名称: 高能光源用梳状截面弯曲通道硅元件的冷却优化设计及放电加工关键技术研究

项目编号: No.U1532106

项目类型: 联合基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 沈理达

作者单位: 南京航空航天大学

项目金额: 52万元

中文摘要: 本项目围绕高能光源硅晶体光学元件冷却能力提高这一重要背景,计划通过冷却结构优化设计及特种加工技术应用,使所制硅晶体元件在冷却效率、热分布均匀性、可靠性、震动控制等方面能均衡提高,进而满足高能光源高质量光束线要求。本项目提出了梳状截面直通道直接冷却结构、梳状截面直通道间接冷却结构及梳状截面弯曲通道直接冷却结构三种冷却方式,拟采用无应力精密放电切割技术对直通道结构进行大深宽比精密切割研究,采用无应力精密放电成形技术对弯曲通道进行制备研究,并计划采用金属精密3D打印技术(SLM)直接打印间接冷却用铜热沉。本项目的主要创新点:(1) 提出了在高能光源硅晶体元件上采用梳状截面弯曲通道冷却结构;(2)提出了利用3D打印技术直接成形具有复杂冷却流道结构的铜热沉;(3) 提出了环形电火花放电成形加工弯曲通道硅晶体元件,并提出了强制间歇式回退加工工艺。

中文关键词: 同步辐射;硅晶体;冷却结构;放电加工;高能光源

英文摘要: This project focuses on the need of cooling capacity of silicon crystal optics used in high energy photon source (HEPS). Properties, such as cooling efficiency, thermal uniformity, reliability and vibration control are hopefully improved in a balanced way through optimised cooling design and nontraditional machining, which can further satisfy the high quality requirements of beamlines of HEPS. Three different cooling ways, straight microchannel with direct cooling, straight microchannel with indirect cooling and curved microchannel with direct cooling, are proposed in this project. Accurate cutting of straight microchannel with large depth to width ratio can be afforded through WEDM, but the curved microchannel are expected to be processed by the way of EDM. Furthermore, 3D printing technology (SLM) will be used to print copper heat sink by additive manufactured way. The main innovation of this project can be listed as follow: (1) The curved microchannel cooling structure is proposed to be used in the silicon crystal optics of HEPS. (2)Copper heat sink with complex cooling flow channel structure is proposed to be prototyped by 3D printing technology. (3)Revolving electric discharge generating machining is also proposed to achieve silicon optics with curved microchannel cooling structure, on top of this, EDM mechanism of fallback processing is mentioned.

英文关键词: Synchrotron Radiation;Silicon crystal;Cooling structure;EDM;High energy photon source

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
115+阅读 · 2022年4月8日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
17+阅读 · 2021年5月16日
专知会员服务
37+阅读 · 2021年5月9日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
22+阅读 · 2022年2月4日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
115+阅读 · 2022年4月8日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
17+阅读 · 2021年5月16日
专知会员服务
37+阅读 · 2021年5月9日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员