项目名称: 基于序优化和遗传算法的大规模交通系统协调控制研究

项目编号: No.61304201

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 沈震

作者单位: 中国科学院自动化研究所

项目金额: 23万元

中文摘要: 在世界的各大城市,交通拥堵都是严重问题,极大的浪费了社会资源。在不改变基建设施的情况下,如何通过提高管控水平来改善交通状况是一个重要问题。给定交通路网和交通出行的情况下,通过改变管控方法究竟能够得到多好的交通状况?或者说,在给定基础设施的情况下,究竟该限制多少车辆出行?在大规模路网上,针对这一问题尚缺乏定量研究。本项目在基于大规模并行计算工具--图形处理器建立的交通系统多智能体模型计算实验平台上,拟对北京这一规模的路网进行整个路面交通的微观仿真,对单目标和多目标协调控制问题,结合动态控制子区分区方法,用遗传算法和专用于大规模系统优化的序优化方法进行求解,并和现行的控制方法作对比。通过这一研究,希望能够定量分析路网通行能力的上限以及改进空间。该结果能够为限行限号等决策提供重要参考依据,有利于更好地利用资源。

中文关键词: 序优化;遗传算法;多智能体模型;图形处理器;

英文摘要: At almost all big cities around the world, the traffic congestion is a notorious problem, which causes a great waste of the social resources. People are very concerned with how to improve the traffic situation without changing the infrastructures. Given the road network and the traffic demands, how much better can we do by improving the management and control methods? Given the infrastructure limitation, how many vehicles should be allowed to go on road? For a large road network, there is little quantitative research for these problems. We propose to use Genetic Algorithms and the Ordinal Optimization method to solve single and multiple objective coordinated control problems for a road network as large as Beijing, based on the multi-agent model running on the computational experiments platform built with Graphics Processing Units (GPU), which are a powerful parallel computing tools. We will compare with popular methods of traffic control and show how much better we can achieve. The results can provide useful references for making decisions and help take better use of resources.

英文关键词: Ordinal Optimization;Genetic Algorithm;Multi-Agent System;Graphics Processing Unit;

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
35+阅读 · 2022年1月31日
专知会员服务
59+阅读 · 2021年6月1日
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
63+阅读 · 2021年4月23日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
46+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
云计算成本优化终极指南
InfoQ
0+阅读 · 2022年2月12日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
社区分享|如何让模型在生产环境上推理得更快
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
自动驾驶技术解读——自动驾驶汽车决策控制系统
智能交通技术
30+阅读 · 2019年7月7日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
2+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
15+阅读 · 2019年3月16日
Arxiv
24+阅读 · 2018年10月24日
小贴士
相关VIP内容
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
35+阅读 · 2022年1月31日
专知会员服务
59+阅读 · 2021年6月1日
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
63+阅读 · 2021年4月23日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
46+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
相关资讯
云计算成本优化终极指南
InfoQ
0+阅读 · 2022年2月12日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
社区分享|如何让模型在生产环境上推理得更快
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
自动驾驶技术解读——自动驾驶汽车决策控制系统
智能交通技术
30+阅读 · 2019年7月7日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员