项目名称: 功能化氧化石墨烯作为新型纳米佐剂在肿瘤DNA疫苗中的研究

项目编号: No.31300824

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 生物科学

项目作者: 许利耕

作者单位: 苏州大学

项目金额: 25万元

中文摘要: 研究开发出安全、有效的疫苗载体或佐剂是肿瘤疫苗领域亟待解决的问题。纳米材料凭借其独特的理化性质如粒径小、比表面积大、易于进行化学修饰、可控性好等成为近年来疫苗载体领域的研究热点。氧化石墨烯较大的表面积使其可以载带大量的功能分子如蛋白质、DNA等,同时其在近红外光的独特吸收特性,使其具有更加理想的基因转染能力,而在生物医学领域尤其是基因载体和肿瘤热疗领域显示出独特的优势,然而其在疫苗领域的研究尚未有报道。本项目拟以CEA质粒DNA为模式抗原,通过对氧化石墨烯进行不同的功能化修饰,系统研究表面化学性质对其佐剂活性的影响,揭示其佐剂作用机制。同时,尝试探索光热技术在提高DNA疫苗免疫原性方面的潜在用途,从而为进一步拓宽石墨烯材料在生物医学领域的广泛应用提供重要的理论依据,为"有效提高DNA疫苗的免疫原性"提供新型的技术手段,也为"更加科学合理地设计纳米材料用于疫苗领域"提供重要的理论参考。

中文关键词: 氧化石墨烯;肿瘤疫苗;纳米佐剂;肿瘤免疫治疗;

英文摘要: There is an urgent need to develop safe and effective vaccine adjuvants for tumor/cancer vaccines. Due to their unique physicochemical properties such as small sizes, large surface areas, easy modification and good controllability, nanomaterials have been the focus in the development of vaccine carriers in recent years. Among these nanomaterials, graphene oxide (GO) has shown great potentials in biomedical applications such as drug & gene delivery and photothermal therapy of cancer owing to its large surface area which makes more payload for funtional molecules like protein and DNA, and its unique near-infrared (NIR) light absorption property. However, the potential application of graphene-based materials in vaccine research is still unknown. In this study, using plasmid carcinoembryonic antigen (CEA) DNA as model antigen, we aim to systematically investigate the effects of surface chemistry on the adjuvant activity of GO and its underlying mechanisms. Meanwhile, photothermal strategy will be also exploited to enhance the immunogenicity of DNA vaccine. This study may provide important information for the broad applications of graphene and its derivatives in biomedicine fields, propose a novel strategy for the effective improvement of the immunogenicity of DNA vaccines and shed lights on the rational design of na

英文关键词: graphene oxide;tumor vaccines;nanoadjuvant;cancer immunotherapy;

成为VIP会员查看完整内容
0

相关内容

英国国防部《人类增强——新范式的黎明》,110页pdf
专知会员服务
33+阅读 · 2022年4月16日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
32+阅读 · 2021年7月26日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
59+阅读 · 2021年1月6日
专知会员服务
26+阅读 · 2020年12月17日
图预训练技术在生物计算领域的应用
GenomicAI
0+阅读 · 2022年2月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月3日
Arxiv
23+阅读 · 2020年9月16日
小贴士
相关主题
相关VIP内容
英国国防部《人类增强——新范式的黎明》,110页pdf
专知会员服务
33+阅读 · 2022年4月16日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
32+阅读 · 2021年7月26日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
59+阅读 · 2021年1月6日
专知会员服务
26+阅读 · 2020年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员