项目名称: 基于蚁群智能的地铁选址建模研究
项目编号: No.41201383
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 地理学
项目作者: 何晋强
作者单位: 中南大学
项目金额: 25万元
中文摘要: 空间优化选址是地理信息科学研究的热点问题,同时也是空间规划研究与应用的难题。由于缺乏已有网络作为骨架,基于栅格数据的线路优化问题相对于基于已有网络的问题较为复杂。如果在线路优化的同时要求进行站点的选取,此时问题变得更为复杂,地铁等设施的选址属于此类问题。本项目拟利用蚁群智能算法构建栅格数据上的地铁线路和站点选址模型,该模型以站点的覆盖/线路的"长度"(成本)作为优化目标,同时进行地铁线路的构造和站点的选取。相比以往的线路覆盖优化模型,此模型更加适合于地铁等的选址。本课题主要研究内容包括:1)大规模栅格数据下的线路优化模型构建;2)已知线路上快速选取较优站点配置方案方法研究3)针对选址模型求解的蚁群算法改进研究。本课题的研究成果可提供一套线型工程优化选址的理论与方法,并为地铁和高速公路等设施的线路和站点(出口)选址提供优化解决方案,为相关决策部门提供一个有力的工具。
中文关键词: 地铁;蚁群算法;选址;覆盖;站点
英文摘要: Spatial optimization problem is a hot issue in geographical information science (GIS) and it is also a difficult problem in spatial planning and its application. Alignment optimal problem on raster data is a little more complex then on a network because of its unstructured feature. The optimal problem become even more complex if the stations need to be selected at the same time, and site selection of subway belongs to such problem. A model for locating subway Alignment and stations on raster data is aimed to build using ant colony intelligence in this project. The subway Alignment and stations are needed to obtain simultaneously and the ratio of stations' coverage and Alignment "length" (cost) is set as the utility function. This model is more suitable for site selection of subway in contrast to some path coverage model built before. The main research content of this project include: 1) Alignment optimization modeling on large-scale raster data; 2) methods for how to select stations quickly on given subway Alignment 3) ant colony algorithms improvement for site selection model of subway. The research achievements of this project can be used to obtain a solution for locating Alignment and stations (exits) of subway (highway), it can also offer a set of theories and methods of site selection in linetype engineerin
英文关键词: subway;ant colony optimization;site selection;coverage;station
Source: 蚁群算法