项目名称: 纳米四氧化三铁-离子液体对水中As(III)的协同电化学传感机制研究

项目编号: No.21475133

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 黄行九

作者单位: 中国科学院合肥物质科学研究院

项目金额: 84万元

中文摘要: 电化学方法能够实现对水中高毒性As(III)的高灵敏检测。然而,目前报道中所使用的电极均为较为昂贵的贵金属电极,且检测都是在极酸环境下进行的,大大限制了电化学方法在实际As(III)检测中的应用。基于此关键科学问题,本项目提出将纳米Fe3O4对As(III)的高吸附以及电还原性能与室温离子液体(RTILs)的高导电性结合起来,构筑基于纳米金属氧化物-RTILs的电化学敏感界面,实现在pH近中性条件下对水中As(III)的超灵敏检测。本项目将纳米技术、电分析化学、环境化学和理论计算结合起来,提出从纳米Fe3O4的晶面角度出发,通过制备暴露不同晶面的Fe3O4纳米晶,在更精细的层面上、从反应微观动力学水平揭示Fe3O4-RTILs复合材料增强电化学信号的本质。预期成果将为从分子甚至是原子水平上设计和筛选基于纳米金属氧化物-RTILs的高灵敏、高选择性、高准确性电化学敏感界面提供有利的理论支撑。

中文关键词: 电分析化学;修饰电极;复合纳米材料;离子液体;理论计算

英文摘要: Electrochemical method has been used to detect As(III) with high sensitivity. However, the reported electrodes were all composed of expensive noble metal. In addition, the noble metal-based electrodes usually operate in strongly acidic media, greatly limiting the real application of electrochemical method in As(III) determination. Based on these key scientific problems, this project combines the high adsorption capacity and electroreduction properties of nanoscale Fe3O4 toward As(III) and high conductivity of room temperature ion liquids (RTILs). Electrochemical sensing surface will be constructed by nanoscale metal oxides-RTILs to determine As(III) in water at near neutral pH with ultra-high sensitivity. This project combines nanotechnology, electrochemical analysis, environmental chemistry, and theoretical computational chemistry to solve the key scientific problems from the aspects of the facets of nanoscale Fe3O4. Through synthesizing Fe3O4 nanocrystals exposed with different facets, the mechanism of enhanced electrochemical signal by Fe3O4-RTILs will be revealed on atomic and microscopic reaction kinetics level. Furthermore, the expected results of this project will provide theoretical support to design and screen highly sensitive, selective, and accurate electrochemical sensing surface based on nanoscale metal oxides-RTILs at molecular or even atomic scale.

英文关键词: electroanalytical chemistry;modification electrode;nanocomposites;ion liquids;theoretical calculations

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
电子科大最新《深度半监督学习》综述论文,24页pdf
专知会员服务
89+阅读 · 2021年3月6日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
49+阅读 · 2020年8月27日
PNAS |Deep learning 预测药物-药物的相互作用
GenomicAI
7+阅读 · 2022年1月20日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员