项目名称: 有限空间微纳双尺度多孔表面沸腾传热机理研究

项目编号: No.51206193

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 工程热物理与能源利用学科

项目作者: 莫冬传

作者单位: 中山大学

项目金额: 25万元

中文摘要: 有限空间沸腾广泛存在于核反应堆、板式换热器、电子元件器冷却等工程应用中,其沸腾传热系数往往随空间变小先增大再减小;而表面微纳加工是强化沸腾传热的重要途径,研究有限空间内微纳结构多孔表面的沸腾现象有重要的学术意义和广泛的应用前景。本项目将采用电化学阳极氧化方法制备不同的铜基微纳双尺度多孔表面,通过控制不同的表面微纳结构及不同高度的有限空间研究其沸腾传热特性,获得有限空间的高度对沸腾传热的影响规律,得到微纳米双尺度对多孔表面的毛细力、孔隙率以及渗透率的影响规律,揭示不同微纳结构对沸腾传热的强化机理,得到不同高度时的最优表面结构;同时设计有限空间两相传热器件(以平板热管为例)并进行传热特性测试,获得微-纳米双尺度多孔表面应用于有限空间两相传热器件的传热规律,为实际应用提供科学依据。

中文关键词: 微纳;双尺度多孔;沸腾;热管;毛细管

英文摘要: Boiling in narrow space is very common in engineering such as nuclear reactor, plate heat exchanger, electronic cooling and so on. The boiling heat transfer coefficient is first increasing and then decreasing as the space decreasing. The micro and nano modified surface is a major process to enhance the boiling, so it has important scientific significance and practical value to study the boiling heat transfer mechanism of Micro-nano bi-porous surface (MNBPS) in narrow space. Adonic method is used to make different MNBCS in this proposal. The boiling heat transfer characteristic and bubble dynamics is studied by changing the structure of the MNBPS, and the space above the MNBCS. It is expected to find the law how the space above the MNBCS affects the boiling and how the MNBCS affect the capillary force, the porosity and the permeability. The boiling enhancement mechanisms will be discussed and the best structure in different height is got. Besides, the MNBCS will be used as key component to develop two-phase heat transfer device such as flat plate heat pipe. The heat transfer performance of the flat plate heat pipe will be test, and its heat transfer characteristic will be got to supply the future application.

英文关键词: Micro-nano;bi-porous;boiling;heat pipe;capillary

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
27+阅读 · 2021年4月2日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
专知会员服务
19+阅读 · 2020年12月23日
专知会员服务
52+阅读 · 2020年12月19日
专知会员服务
106+阅读 · 2020年11月27日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
微软出“奇招”,用沸腾液体为数据中心降温
微软研究院AI头条
0+阅读 · 2021年5月21日
立体匹配技术简介
计算机视觉life
28+阅读 · 2019年4月22日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
27+阅读 · 2021年11月11日
小贴士
相关主题
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
27+阅读 · 2021年4月2日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
专知会员服务
19+阅读 · 2020年12月23日
专知会员服务
52+阅读 · 2020年12月19日
专知会员服务
106+阅读 · 2020年11月27日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
微软出“奇招”,用沸腾液体为数据中心降温
微软研究院AI头条
0+阅读 · 2021年5月21日
立体匹配技术简介
计算机视觉life
28+阅读 · 2019年4月22日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员