项目名称: 强冲击加载下材料微层裂的热-力耦合多尺度研究

项目编号: No.11202032

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 向美珍

作者单位: 北京应用物理与计算数学研究所

项目金额: 25万元

中文摘要: 材料在强冲击加载下的动态响应和破坏特性是军事、国防工程领域的关键基础科学问题之一。微层裂是材料在强冲击作用下的一种复杂的破坏行为,包含着高温、高压和热-力耦合效应以及高应变率破碎等强非线性行为。本项目拟在申请人已有的研究成果的基础上,针对材料在强冲击载荷作用下的微层裂现象展开多尺度建模和计算的研究。主要研究内容包括:(1)在微-纳米尺度下,利用分子动力学模拟研究微层裂碎片产生的微观机理。(2)基于原子模型和细观力学模型,建立适合于高应变率、高温、高压情况的热-力耦合本构关系和损伤、熔化判据。(3)建立热-力耦合多尺度模型和计算方法,开发多尺度计算程序,从多个时空-尺度上对微层裂碎片的形成、断裂到喷射的动态过程做全面、系统的模拟和分析。本项目的研究目标是建立可靠的理论模型和数值计算程序,为军事、国防工程中的高端武器和科学仪器设计所涉及到的微层裂问题提供有价值的参考。

中文关键词: 微层裂;冲击加载;多尺度;分子动力学;损伤

英文摘要: The dynamical responses and damage properteies of materials under strong shock loading are one of key fundamental science problems in military and national defense engineering. Micro-spallation is complicated phenomenon of materials under strong shock loading, which includes high pressure,high temperature and thermo-mechanical effects and is a strong nonlinear problem of high strain rate spallation. Based on research achivements of the applicants, the present project is aimed at multi-scale modelling and computing about micro-spallation of materials under strong shock loading. Main research contents of this projects are as follows: (1) Study the mechanism of micro-spallation phenomenon at micro-nano scales using molecular dynamics simulations; (2) Based on atomistic model and mesomechanics, construct thermo-mechanical constitutive relations, damage and melting criteria of materials in high strain rate, high temperature and high pressure cases; (3) Develop coupled atomistic-continuum thermo-mechanical multiscale models computing methods, and develop multiscale simulation program to simulate the dynamical process of micro-spallation. The main objective of this project is to derive dependable multiscale theory and develop effective computing methods and simulation program, which are expected to be usefull referen

英文关键词: micro-spallation;shock loading;multiscale;molecular dynamics;damage

成为VIP会员查看完整内容
0

相关内容

自编码器导论,26页pdf
专知会员服务
42+阅读 · 2022年1月18日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
105+阅读 · 2021年8月23日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
83+阅读 · 2020年10月6日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
中国高校最强超算!上算引力波,下算光量子
量子位
0+阅读 · 2021年12月15日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
27+阅读 · 2017年12月6日
小贴士
相关主题
相关VIP内容
自编码器导论,26页pdf
专知会员服务
42+阅读 · 2022年1月18日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
105+阅读 · 2021年8月23日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
83+阅读 · 2020年10月6日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员