项目名称: 基于拓扑绝缘体表面/边缘态纳米结构量子输运及调控研究

项目编号: No.11274108

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 周光辉

作者单位: 湖南师范大学

项目金额: 78万元

中文摘要: 拓扑绝缘体(TI)是一种由自旋轨道耦合导致的量子物态,体态是绝缘体而表面/边缘态则是受时间反演对称性保护自旋分辩的金属,展现许多新奇量子效应和电磁特性,在未来高速低耗(自旋)电子器件和量子计算等领域具有广阔应用前景。目前3DTI的研究主要是针对2D表面态,功能结构器件的设计需要认识表面态在打破2D空间平移对称性基础上的准一维(Q1D)体系的基本性质。本项目针对金属侧电极与铁磁条在表面形成的量子波导、单根纳米条带等基于Bi2Se3系列3DTI表面的纳米结构,研究条带上下表面间及其与侧表面的耦合、受限波导模式结构、子能级分布与带隙的变化、无序与相互作用、铁磁近邻效应以及透射率和磁阻等电子结构与自旋输运性质及外场调控中的基础物理问题。项目的特色和创新是将发展和建立基于TI表面态Q1D体系的理论和处理方法。这类研究对进一步认清TI表面态的物理本质、探索基于表面态的光电器件设计具有重要意义。

中文关键词: 拓扑绝缘体;纳米结构;表面/边缘态;量子输运性质;

英文摘要: Topological insulators (TIs) are new states of quantum matter orignating from spin-orbit coupling, which are characterized by a full insulating gap in the bulk and gapless surface/edge states protected by time-reversal symmetry. TIs exhibit many new quantum effects and electromagnetic features, and may be extensively used in spintronic devices with high speed and low consumption as well as quantum computing. The previous researches have been mainly for 2D surface states, but the design of low-dimension functional devices requires the knowledge of the nature of quasi-one-dimensional (Q1D) systems under the breaking of 2D translational invariance. This project will focus on experimentally realized waveguides and their nanostructures on the surface of B12Se3 crystal by gate-electrodes and nanoribbons, and investigate their electronic structure and transport properties, such as subband distribution, formation of gap, spin polarization, hybridization of surfaces, disorders and interactions, ferromagnetic proximity, transmission and magnetoresistance and etc. The main characteristic and innovation in the proposal is to complete and develop the theory and method for Q1D systems based on 3DTI, and this has the important significant for the further understanding of the nature of TI surface states and designing of elect

英文关键词: topological insulators;nanostructures;surface/edge states;quantum transport properties;

成为VIP会员查看完整内容
0

相关内容

【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
45+阅读 · 2020年11月13日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
时间晶体,直到世界尽头的浪漫
新智元
1+阅读 · 2022年3月13日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关VIP内容
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
45+阅读 · 2020年11月13日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员