项目名称: 模糊环境下基于差分进化方法的不常用备件联合补货模型
项目编号: No.70801030
项目类型: 青年科学基金项目
立项/批准年度: 2009
项目学科: 交通运输
项目作者: 王林
作者单位: 华中科技大学
项目金额: 18万元
中文摘要: 不常用备件是设备正常维护和应急处理的重要保障性物资,对全球化采购背景下我国连续性生产企业而言,联合补货策略是一种非常有效的成本控制手段,该策略的关键在于不确定因素处理的合理性。目前的研究多是确定性补货模型(假设条件过于理想)和随机性联合补货模型(难以获得必须的样本来客观地验证假设是否合理)。本项目克服传统研究方法局限性,在模糊情况下,研究模糊信息的获取及表达方式;构建联合补货模型并根据约束条件进行拓展研究;分析求解算法复杂度,针对现有求解算法的缺点,引入新兴的差分进化算法,并融合其它进化算法的优点,设计高效可靠、通用型强的混合智能求解算法;结合核电企业进行应用研究,验证模型和算法的科学适用性。本研究属于新颖的智能优化算法与模糊库存模型的交叉研究,具有重要的理论意义;解决的是有很强现实意义的库存优化问题,具有很高的实用价值。
中文关键词: 连续生产;不常用备件;联合补货;模糊决策;差分进化
英文摘要: Rarely-used spare parts are very important for the normal maintenance and emergency treatment of equipments. Joint replenishment strategy is an effective way of cost control for the continue production enterprises that are in front of global purchasing in China.The key success factors of this strategy is the treatment rationality of uncertain factors. At present, most of researches can be classified into two types: deterministic joint replenishment model (the assumption isn't practical) and stochastic inventory model (no necessary sample to test the assumption). In order to overcome these limitations, this project deal with this problem based on fuzzy and differential evolution theory. The following works are involved. Firstly, we will study the acquisition of fuzzy information and its expression. Secondly, the joint replenishment model and the extended model according to other constraints will be constructed. Thirdly, we will analyse the algorithm complexity and design a novel highly efficient intelligent algorithm based on differential evolution theory with the advantage of other algorithm. At last, the proposed model and algorithm will be tested by the example of nuclear power plant spare part joint replenishment. This project is a crossed research of new intelligent optimization algorithm and fuzzy inventory model under a practical application background with important theory significance and practical value.
英文关键词: continue production;rarely-used spare part;joint replenishment;fuzzy decision;differential evolution