项目名称: 金属原子线和非氧化-还原型分子结电导的电化学门控研究

项目编号: No.21273204

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 周小顺

作者单位: 浙江师范大学

项目金额: 80万元

中文摘要: 金属原子线及金属-分子-金属结具有特殊的量子输运行为,对其输运行为的调控是当前纳/分子电子学研究中重要而富有挑战性的课题。目前,常温常压下,传统的方法通常仅适合构建和研究少数不易受外界条件影响的、具有单通道导电机理的贵金属体系的原子线和电导,因而限制了对金属原子线以及分子结电导的门控研究。本项目拟利用申请者发展的基于跳跃接触的电化学扫描隧道显微镜裂结技术(ECSTM-BJ),构建和研究未见文献报道或传统方法较难测量的Cd和Zn等金属原子线及其电导,重点研究其电导的电化学门控,并从单原子尺寸上研究场效应晶体管效应;研究ECSTM-BJ方法对非氧化-还原型分子的分子结电导及其电子输运的电化学门控;同时,结合理论计算,揭示电化学对金属原子线和非氧化-还原型分子的电荷输运的调控机理。本研究有助于解决传统半导体器件不断微型化所面临的诸多挑战和限制,为纳电子学/器件的应用研究提供基础。

中文关键词: 电化学门控;金属原子线;单分子结;电子输运;扫描隧道显微镜

英文摘要: Metal atomic-size wire and metal-molecule-metal junction exhibit novel quantum transport properties, and the control of their charge transport is an important and challenging issue in current nano-electronics and molecular electronics. The traditional conductance measurement methods are usually only suitable to construct and study the atomic-size wire of noble metal, which has single channel with stable transmission at ambient temperature and pressure. The limitation of the measurement methods and system restricts the investigation of gate controlling conductance of metal atomic-size wire and non-redox molecular junction. In this project, the conductance and its electrochemical gating effect of atomic-size wire, such as Cd and Zn not or seldom reported in literature, will be investigated by the electrochemical strategy STM-break junctions through jump-to-contact mechanism, and then the effect of field effect transistor will be carried out on the single atom level. We will also extend this approach to study the non-redox molecular junction. The electrochemical gating mechanism will be concluded by combining the experimental results and the theoretical calculation. This work will help to overcome the difficulties and limitations that traditional metal-oxide semiconductor technology faces upon further downscaling,

英文关键词: Electrochemical gating;Metal atomic-size wire;Single molecule junction;Electron tranport;Scanning tunneling microscopy

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】设置多智能体策略梯度的方差
专知会员服务
20+阅读 · 2021年10月24日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
45+阅读 · 2021年5月17日
专知会员服务
31+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
知识增强的文本生成研究进展
专知会员服务
98+阅读 · 2021年3月6日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
30+阅读 · 2021年7月7日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
小贴士
相关VIP内容
【NeurIPS 2021】设置多智能体策略梯度的方差
专知会员服务
20+阅读 · 2021年10月24日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
45+阅读 · 2021年5月17日
专知会员服务
31+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
知识增强的文本生成研究进展
专知会员服务
98+阅读 · 2021年3月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员