项目名称: 非等间距天文观测资料时谱分析与研究
项目编号: No.11203004
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 天文学、地球科学
项目作者: 赵娟
作者单位: 北京师范大学
项目金额: 25万元
中文摘要: 天文学中的大部分观测量具有非常复杂的变化,存在很多的周期和准周期性成分。很多观测资料采样分布往往是非等间距的,有些序列数据缺失较多或特别观测时段间隔较大或采样间隔的变化很大等,对于这些特殊非等间距数据序列,需要利用非等间距频谱分析方法。对于目前出现的一些非等间距时间序列频谱方法进行分析比较,对其稳定性和周期探测的有效性进行深入研究,对该方法的误差分析和置信度进行详细的研究,并通过数值模拟进行检验。应用这些方法开展天文实测因子的频谱分析,分析讨论使用不同方法、对于不同观测序列等多种情况下周期分量和强度变化的特点,对非等间距频谱分析方法在多种不同情况下的特点进行充分的探讨。深入开展非等间距序列的频谱分析,以及更广泛的应用于特殊时间序列的频谱分析工作中是件非常重要的、极其有意义的研究工作,对认识观测数据的变化规律和物理机制研究是十分重要的。
中文关键词: 时谱分析;非等间距;实测数据;;
英文摘要: Many astronomical processes have complicated variation character and have periodic or quasi-periodic character. Because of the nature of observation, the time series are frequently unevenly spaced, and maybe miss large amounts of data, or contain some gaps in special interval, even the intervals of the time series are full of variety sometimes. The best way to describe the periodicities in these unevenly spaced series is through unevenly sampled spectral analysis methods. We will compare the techniques on spectral analysis for unequally sampled time series, especially investigate detailed about the stability, the validity detection of period and the error analysis, the significance test. In addition, we will test through numeric simulation. Applying these methods for detecting the presence and significance of a period of observational series, we will discuss the character of periods and the intensity variation while using differents methods. Studying the spectral analysis methods on unevenly sampled data thoroughly and applying these methods widely to observational time series are significant. In addition, it is very important to comprehend the changing pattern and physical mechanism of observational data.
英文关键词: Spectrum analysis;Unevenly sampled;Observational data;;