项目名称: 信号传导蛋白Ras功能的分子机理的理论模拟与研究

项目编号: No.21473056

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 夏飞

作者单位: 华东师范大学

项目金额: 40万元

中文摘要: 真核细胞中大约150种包括鸟嘌呤核苷酸的蛋白参与了细胞中的各种过程,其中包括Ras家族蛋白。Ras蛋白能够控制细胞分裂与生长信号的传导,其功能与发生在Ras蛋白内的三磷酸鸟苷分子(GTP)的水解反应密切相关。Ras蛋白与GTP结合时处于活性状态,可以传导信号,当GTP发生水解反应后将转化为二磷酸鸟苷分子(GDP)使Ras蛋白质失活,关闭信号传导通路。Ras蛋白功能的失调将导致传导信号的不断放大,引起细胞恶性分裂增生,最终导致肿瘤的发生。我们将利用量子力学与分子动力学相结合(QM/MM)的方法模拟与研究Ras蛋白的功能,包括GTP分子水解的机理,Ras蛋白突变对其活性的影响,以及Ras蛋白构象活性与功能间的关系。研究Ras蛋白信号传导的分子机理为揭示肿瘤发病机理与设计抗肿瘤药物提供了重要的理论依据。

中文关键词: Ras蛋白;GTP水解;多尺度模拟;反应机理;粗粒化模型

英文摘要: Approximately 150 different guanine nucleotide-binding proteins are present in eukaryotic cells where they are responsible for various cellular processes. These include members of the Ras-related superfamily and others. The signal transduction processes involved in cell growth and differentiation are accomplished with the hydrolysis of guanosine triphosphate(GTP) in Ras. The GTP is hydrolyzed by Ras to yield guanosine diphosphate (GDP), with the Ras conformation switching from the "on" to "off" state. The resulted complex RasGDP can be reactivated again by exchanging the GDP for the second GTP. The cycling of GTP hydrolysis with Ras is critical for signal transduction in living cells. A malfunctions associated with constitutively active Ras can cause tumors. We will simulate and study the catalytic functions of Ras,including the molcular mechanism of GTP hydrolysis, the effect of Ras mutant on GTP hydrolysis and the relationship between the conformations of Ras protein and its activity, with using the combined quantum mechanics and molecular mechanics(QM/MM) simultion methods. The results of this project will give a clear explanation of the molecular mechanism of Ras functions at the atomistic level and provide a significant theoretical foundation for the drug design of anti-tumors.

英文关键词: Ras protein;GTP hydrolysis;multi-scale simulation;reaction mechanism;coarse-grained model

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
29+阅读 · 2021年1月9日
专知会员服务
34+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
30+阅读 · 2021年7月7日
小贴士
相关主题
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
29+阅读 · 2021年1月9日
专知会员服务
34+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员