项目名称: 纳米异质结构中的声子输运

项目编号: No.11334007

项目类型: 重点项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 李保文

作者单位: 同济大学

项目金额: 320万元

中文摘要: 声子-量子化的晶格振动-是半导体材料中热的主要载体。现代电子器件主要由高密度多界面的纳米结构组成。随着微电子器件进一步的小型化和集成电路的高密度化,高密度热量的产生和积聚成了微电子纳米器件发展的一个瓶颈和障碍。因此,如何有效的散发这些热量是目前微纳电子器件面临的最大挑战。但是,纳米尺度声子如何透过异质界面的输运是一个悬而未决的科学问题。已有的两个理论DMM和AMM 理论都过于简化,既没有考虑纳米介质的离散性也没有考虑到系统的维度;更没有考虑非线性效应如声子和其他热载体如电子的相互作用。所以实验结果都与两个模型的结果相差10-100倍。本项目将对声子通过纳米异质界面进行系统的理论和实验研究:(1)考虑纳米结构的离散性和有限尺度性建立一个新的声子输运理论;(2)研究界面的物理特征,如粗糙性,界面的耦合强度等对声子输运的影响;(3)研究声子/声子和声子/电子的相互作用对声子输运的影响。

中文关键词: 声子输运;界面热阻;声子-声子相互作用;声子-电子相互作用;纳米异质结构

英文摘要: Phonons - the quantization of lattice vibration- are the main heat carriers in semiconductor. Modern electronic devices are comprised of high density of nanostructured interfaces. With increasing miniaturization and integration, creation and accumulation of high density heat becomes the bottle neck of the further development of micro and nanoelectronics. Therefore, how to dissipate the heat is the most challenging problem in semiconductor industry. Howerver, phonons transport through the interface is still an outstanding scientific question. The existing two theories - Diffusive Mismatch Model (DMM) and Acoustic Mismatch Model (AMM) are too simple . They don't take into account the atomic structure of the interface, let alone the electron-phonon, and phonon-phonon interaction. The experimental results are 10-100 times smaller/larger than both the theories' predictions. . In this project, we would like to investigate both theoretically and experimentally phonon transport through nanoscale heterostructures. We will: (1) Establish a brand new phonon transport theory by considering the atomic structure of the interface ;(2) Investigate the effect of the interface roughtheness, bonding strength, geometric structure etc on phonon transport; (3)Investigate the effect of phonon-phonon and electron-phonon interaction on the phonon transport.

英文关键词: phonon transport;Thermal interface;Phonon-phonon interaction;Phonon-electron interaction;nanoscale heterostructure

成为VIP会员查看完整内容
1

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
41+阅读 · 2022年4月4日
深度学习理论,55页ppt,Preetum Nakkiran (UCSD)
专知会员服务
33+阅读 · 2021年10月27日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
25+阅读 · 2021年8月22日
专知会员服务
18+阅读 · 2021年6月12日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
58+阅读 · 2021年2月12日
专知会员服务
19+阅读 · 2020年12月23日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
41+阅读 · 2022年4月4日
深度学习理论,55页ppt,Preetum Nakkiran (UCSD)
专知会员服务
33+阅读 · 2021年10月27日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
25+阅读 · 2021年8月22日
专知会员服务
18+阅读 · 2021年6月12日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
58+阅读 · 2021年2月12日
专知会员服务
19+阅读 · 2020年12月23日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员